Logistic Regression and Newton’s Method

36-350, Data Mining
12 November 2008

Readings in textbook: Sections 10.7 (logistic regression), sections
8.1 and 8.3 (optimization), and 11.3 (generalized linear models).
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Last time, we looked at the situation where we have a vector of input fea-

tures!| X and we want to predict a binary class Y. In that lecture, the two

classes were Y = +1 and Y = —1; in this one, it will simplify the book-keeping

to make the classes Y =1 and Y = 0.

1 Logistic Regression

A linear classifier, as such, doesn’t give us probabilities for the classes in any par-
ticular case. But we’ve seen that we often want such probabilities — to handle
different error costs between classes, or to give us some indication of confidence
for bet-hedging, or (perhaps most important) when perfect classification isn’t
possible.

People sometimes try to get conditional probabilities for classes by learning
a linear classifier, and then saying the class probabilities at a point depend on
its margin from the boundary, but this is a dubious hack, and should be avoided
unless you want to descend to the level of (bad) psychologists and economists.
If you want to estimate probabilities, fit a stochastic model.

1If we have some discrete features, we can handle them through indicator variables, as in
linear regression.



Several steps above that level, one can think like an old-school statistician,
and ask “how can I use linear regression on this problem?”

1. The most obvious idea is to let Pr (Y =1X = f) — for short, p(Z) — be

a linear function of #. Every increment of a component of & would add or
subtract so much to the probability. The conceptual problem here is that
p must be between 0 and 1, and linear functions are unbounded.

2. The next most obvious idea is to let logp(Z) be a linear function of &,
so that changing an input variable multiplies the probability by a fixed
amount. The problem is that logarithms are unbounded in only one di-
rection, and linear functions are not.

3. Finally, the easiest modification of logp which has an unbounded range
is the logistic (or logit) transformation, log ﬁ. We can make this
a linear function of & without fear of nonsensical results. (Of course the
results could still happen to be wrong, but they’re not guaranteed to be
wrong.)

This last alternative is logistic regression.
Formally, the model logistic regression model is that

p(Z) -
log — =b+ T W 1
1 —p(Z) ®
Solving for p, this gives
b+Z -0 1
P= s = — (2)
1 + eb+Z-w 1+ e~ (b+-0)

Notice that the over-all specification is a lot easier to grasp in terms of the
transformed probability that in terms of the untransformed probabilityEI

Recall that to minimize the mis-classification rate, we should predict Y =1
when p > 0.5 and ¥ = 0 when p < 0.5. This means guessing 1 whenever
b+ & -0 is non-negative, and 0 otherwise. So logistic regression gives us a linear
classifier, like we saw last time.

Recall further that the distance from the decision boundary is b/||w|| + & -
w/||W]|. So logistic regression not only says where the boundary between the
classes is, but also says (via Eq.[2]) that the class probabilities depend on distance
from the boundary, in a particular way, and that they go towards the extremes
(0 and 1) more rapidly when ||| is larger. It’s these statements about proba-
bilities which make logistic regression more than just a linear classifier. It makes
stronger, more detailed predictions, and can be fit in a different way; but those
strong predictions could be wrong.

Using logistic regression to predict class probabilities is a modeling choice,
just like it’s a modeling choice to predict quantitative variables with linear

2Unless you’ve taken statistical mechanics, in which case you recognize that this is the
Boltzmann distribution for a system with two energy levels, 0 and —(b + & - ).



Logistic regression with b=-0.1, w=(-.2,.2)

Logistic regression with b=-0.5, w=(-1,1)
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Figure 1: Effects of scaling logistic regression parameters. Values of z; and x4
are the same in all plots (~ Unif(—1, 1) for both coordinates), but labels were
generated randomly from logistic regressions with b = —0.1, w = (-0.2,0.2)
(top left); from b = —0.5, w = (—1,1) (top right); from b = —2.5, w = (=5, 5)
(bottom left); and from a perfect linear classifier with the same boundary. The
large black dot is the origin.



regression. In neither case is the appropriateness of the model guaranteed by
the gods, nature, mathematical necessity, etc. We begin by positing the model,
to get something to work with, and we end (if we know what we’re doing) by
checking whether it really does match the data, or whether it has systematic
flaws.

Logistic regression is one of the most commonly used tools for applied statis-
tics and data mining. There are basically four reasons for this.

1. Tradition.

2. In addition to the heuristic approach above, the quantity logp/(1 — p)
plays an important role in the analysis of contingency tables (the “log
odds”). Classification is a bit like having a contingency table with two
columns (classes) and infinitely many rows (values of Z). With a finite
contingency table, we can estimate the log-odds for each row empirically,
by just taking counts in the table. With infinitely many rows, we need
some sort of interpolation scheme; logistic regression is linear interpolation

for the log-odds.

3. It’s closely related to “exponential family” distributions, where the prob-
ability of some vector ¥ is proportional to exp wg + ZT:l f;(¥)w;. If one
of the components of ¥ is binary, and the functions f; are all the identity
function, then we get a logistic regression. Exponential families arise in
many contexts in statistical theory (and in physics!), so there are lots of
problems which can be turned into logistic regression.

4. Tt often works surprisingly well as a classifier. But, many simple techniques
often work surprisingly well as classifiers, and this doesn’t really testify to
logistic regression getting the probabilities right.

1.1 Likelihood Function for Logistic Regression

Because logistic regression predicts probabilities, rather than just classes, we
can fit it using likelihood. For each training data-point, we have a vector of
features, ¥;, and an observed class, y;. The probability of that class was either
p,ify; =1, or 1 — p, if y; = 0. The likelihood is then

n

La.b) = [ p(@)" (1 —p(@)' ™ (3)

i=1

(I could substitute in the actual equation for p, but things will be clearer in a
moment if I don’t.) The log-likelihood turns products into sums:
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Z y; log p(%;) + (1 — y;) log 1 — p(&;) (4)

= glogl — p(F;) +;yi log% (5)
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= ) logl—p(&)+ Y wi(b+ ;- ) (6)
i=1 i=1

= Y —logl 4T 4N yi(b+ F - ) (7)

=1 =1

where in the next-to-last step we finally use equation

Typically, to find the maximum likelihood estimates we’d differentiate the
log likelihood with respect to the parameters, set the derivatives equal to zero,
and solve. To start that, take the derivative with respect to one component of
W, say wj.

ot - 1 b+, B -
ow, Z 1+ eb+fi-7ﬂe o Tij + Z YiZij (8)
J i=1 i=1

n
= > (i — p(@i;b,0))ay; (9)
i=1
We are not going to be able to set this to zero and solve exactly. (It’s a tran-
scendental equation!) We can however approximately solve it numerically.

1.2 Logistic Regression with More Than Two Classes

If Y can take on more than two values, we can still use logistic regression.
Instead of having one set of parameters b, W, each class ¢ will have its own offset
b. and vector w,., and the predicted conditional probabilities will be
. ebe+ @b

It can be shown that when there are only two classes (say, 0 and 1), equation
reduces to equation with b = by — by and @ = W) — Wy. (EXERCISE: Show
this.) In fact, one can pick one of the classes, say ¢ = 0, and fix by = 0, Wy = 0,
without any loss of generality.

Calculation of the likelihood now proceeds as before (only with more book-
keeping), and so does maximum likelihood estimation.

2 Newton’s Method for Numerical Optimization

There are a huge number of methods for numerical optimization; we can’t cover
all bases, and there is no magical method which will always work better than
anything else. However, there are some methods which work very well on an
awful lot of the problems which keep coming up, and it’s worth spending a
moment to sketch how they work. One of the most ancient yet important of
them is Newton’s method (alias “Newton-Raphson”).

Let’s start with the simplest case of minimizing a function of one scalar
variable, say f(w). We want to find the location of the global minimum, w*.



We suppose that f is smooth, and that w* is an interior minimum, meaning
that the derivative at w™ is zero and the second derivative is positive. Near the
minimum we could make a Taylor expansion:
) = f(w") + 2w - L (1)
2 dw? |, .-
(We can see here that the second derivative has to be positive to ensure that
f(w) > f(w*).) In words, f(w) is close to quadratic near the minimum.
Newton’s method uses this fact, and minimizes a quadratic approzimation
to the function we are really interested in. (In other words, Newton’s method
is to replace the problem we want to solve with a problem we can solve.) Guess
an initial point wq. If this is close to the minimum, we can take a second order
Taylor expansion around wg and it will still be accurate:

2
flw) ~ o) + (= wo) B 4w —wn) TL

(12)

w=wo

Now it’s easy to minimize the right-hand side of equation Let’s abbreviate

the derivatives, because they get tiresome to keep writing out: %’ =

Ww=wq
1 (wp), j%é = f"(wp). We just take the derivative with respect to w, and
set it equal to_zego at a point we’ll call w;:
1
0 = f'wo) + 5f"(wo)2(wr — wo) (13)
' (wo)
o 14
w1 wWo f”(wo) ( )

The value w; should be a better guess at the minimum w* than the initial
one wy was. So if we use it to make a quadratic approximation to f, we’ll get
a better approximation, and so we can iterate this procedure, minimizing one
approximation and then using that to get a new approximation:
f'(wn)

wn+1 W, f//(wn) (15)
Notice that the true minimum w* is a fixed point of equation[I5} if we happen
to land on it, we’ll stay there (since f/'(w*) = 0). We won’t show it, but it can
be proved that if wq is close enough to w*, then w, — w*, and that in general
|w, — w*| = O(n=2), a very rapid rate of convergence. (Doubling the number
of iterations we use doesn’t reduce the error by a factor of two, but by a factor
of four.)



Let’s put this together in an algorithm.

my.newton = function(f,f.prime,f.prime2,w0,tolerance=1e-3,max.iter=50) {
w = w0
old.f = f(w)
iterations = 0
made.changes = TRUE
while(made.changes & (iterations < max.iter)) {
iterations <- iterations +1
made.changes <- FALSE
new.w = w - f.prime(w)/f.prime2(w)
new.f = f(new.w)
relative.change = abs(new.f - o0ld.f)/old.f -1
made.changes = (relative.changes > tolerance)
W = new.w
old.f = new.f
}
if (made.changes) {
warning("Newton’s method terminated before convergence")
}
return(list (minimum=w,value=f (w) ,deriv=f.prime(w) ,deriv2=f.prime2(w),
iterations=iterations,converged=!made.changes))

The first three arguments here have to al be functions. The fourth argument
is our initial guess for the minimum, wgy. The last arguments keep Newton’s
method from cycling forever: tolerance tells it to stop when the function
stops changing very much (the relative difference between f(w,) and f(w,_1)
is small), and max.iter tells it to never do more than a certain number of steps
no matter what. The return value includes the estmated minimum, the value of
the function there, and some diagnostics — the derivative should be very small,
the second derivative should be positive, etc.

You may have noticed some potential problems — what if we land on a
point where f” is zero? What if f(w,41) > f(w,)? Etc. There are ways of
handling these issues, and more, which are incorporated into real optimization
algorithms from numerical analysis — such as the optim function in R; I strongly
recommend you use that, or something like that, rather than trying to roll your
own optimization codef]

2.1 Newton’s Method in More than One Dimension

Suppose that the objective f is a function of multiple arguments, f (w1, wa, ... wp).
Let’s bundle the parameters into a single vector, w. Then the Newton update
is

W1 = Wy — Hil(wn)vf(u_;n) (16)

3optim actually is a wrapper for several different optimization methods; method=BFGS selects
a Newtonian method; BFGS is an acronym for the names of the algorithm’s inventors.



where V f is the gradient of f, its vector of partial derivatives [0 f /0w, 0 f /Owa,
and H is the Hessian of f, its matrix of second partial derivatives, H;; =
62f/8wi8wj.

Calculating H and V f isn’t usually very time-consuming, but taking the
inverse of H is, unless it happens to be a diagonal matrix. This leads to various
quasi-Newton methods, which either approximate H by a diagonal matrix,
or take a proper inverse of H only rarely (maybe just once), and then try to
update an estimate of H~!(w,) as w,, changes. (See section 8.3 in the textbook
for more.)

3 Generalized Linear Models and Generalized
Additive Models

We went into the discussion of Newton’s method because we wanted to maximize
the likelihood for logistic regression. We could actually trace this through, but
instead I'll just point you to section 11.3 of the textbookEI

Logistic regression is part of a broader family of generalized linear mod-
els (GLMs), where the conditional distribution of the response falls in some
parametric family, and the parameters are set by the linear predictor. Ordi-
nary, least-squares regression is the case where response is Gaussian, with mean
equal to the linear predictor, and constant variance. Logistic regression is the
case where the response is binomial, with n equal to the number of data-points
with the given # (often but not always 1), and p is given by Equation Chang-
ing the relationship between the parameters and the linear predictor is called
changing the link function. For computational reasons, the link function is
actually the function you apply to the mean response to get back the linear pre-
dictor, rather than the other way around — rather than . There are thus
other forms of binomial regression besides logistic regression{’| There is also
Poisson regression (appropriate when the data are counts without any upper
limit), gamma regression, etc.

In R, any standard GLM can be fit using the (standard) glm function, whose
syntax is very similar to that of lm. The major wrinkle is that, of course, you
need to specify the family of probability distributions to use, by the family
option — family=binomial defaults to logistic regression. (See help(glm) for
the gory details on how to do, say, probit regression.) All of these are fit by the
same sort of numerical likelihood maximization.

One caution about using maximum likelihood to fit logistic regression is that
it can seem to work badly when the training data can be linearly separated.
The reason is that, to make the likelihood large, p(Z;) should be large when
y; = 1, and p should be small when y; = 0. If b, is a set of parameters
which perfectly classifies the training data, then be, ¢ is too, for any ¢ > 1,

4Faraway| (2006), while somewhat light on theory, is good on the practicalities of using
GLMs, especially (as the title suggests) the R practicalities.

5My experience is that these tend to give similar error rates as classifiers, but have very
different guesses about the underlying probabilities.

.. Of Jow,),



but in a logistic regression the second set of parameters will have more extreme
probabilities, and so a higher likelihood. For linearly separable data, then,
there is no parameter vector which mazximizes the likelihood, since L can always
be increased by making the vector larger but keeping it pointed in the same
direction.

You should, of course, be so lucky as to have this problem.

3.1 Generalized Additive Models

A natural step beyond generalized linear models is generalized additive mod-
els (GAMs), where instead of making the transformed mean response a linear
function of the inputs, we make it an additive function of the inputs. This means
combining a function for fitting additive models with likelihood maximization.
The R function here is gam, from the CRAN package of the same name. (Alter-
nately, use the function gam in the package mgcv, which is part of the default R
installation.)

GAMs can be used to check GLMs in much the same way that smoothers
can be used to check parametric regressions: fit a GAM and a GLM to the same
data, then simulate from the GLM, and re-fit both models to the simulated data.
Repeated many times, this gives a distribution for how much better the GAM
will seem to fit than the GLM does, even when the GLM is true. You can then
read a p-value off of this distribution.

3.2 An Example (Including Model Checking)

Here’s a worked R example, using the data from the upper right panel of Fig-
ure The 50 x 2 matrix x holds the input variables (the coordinates are
independently and uniformly distributed on [—1,1]), and y.1 the correspond-
ing class labels, themselves generated from a logistic regression with b = —0.5,
w=(-1,1).

> logr = glm(y.1 ~ x[,1] + x[,2], family=binomial)
> logr

Call: glm(formula = y.1 ~ x[, 1] + x[, 2], family = binomial)

Coefficients:
(Intercept) x[, 1] x[, 2]
-0.410 -1.050 1.366

Degrees of Freedom: 49 Total (i.e. Null); 47 Residual

Null Deviance: 68.59

Residual Deviance: 58.81 AIC: 64.81

> sum(ifelse(logr$fitted.values<0.5,0,1) != y.1)/length(y.1)
[1] 0.32



The deviance of a model fitted by maximum likelihood is (twice) the differ-
ence between its log likelihood and the maximum log likelihood for a saturated
model, i.e., a model with one parameter per observation. Hopefully, the sat-
urated model can give a perfect ﬁtﬂ Here the saturated model would assign
probabilityAl to the observed outcomesﬂ and the logarithm of 1 is zero, so
D= 26(/5, ). The null deviance is what’s achievable by using just a constant
bias b and setting @ = 0. The fitted model definitely improves on thatEI

The fitted values of the logistic regression are the class probabilities; this
shows that the error rate of the logistic regression, if you force it to predict
actual classes, is 32%. This sounds bad, but notice from the contour lines in
the figure that lots of the probabilities are near 0.5, meaning that the classes
are just genuinely hard to predict.

To see how well the logistic regression assumption holds up, let’s compare
this to a GAM.

> gam.1 = gam(y.1"lo(x[,1]1)+lo(x[,2]),family="binomial")

> gam.1

Call:

gam(formula = y.1 ~ lo(x[, 1]) + lo(x[, 2]), family = "binomial")

Degrees of Freedom: 49 total; 41.39957 Residual
Residual Deviance: 49.17522

This fits a GAM to the same data, using lowess smoothing of both input vari-
ables. Notice that the residual deviance is lower. That is, the GAM fits better.
We expect this; the question is whether the difference is significant, or within
the range of what we should expect when logistic regression is valid. To test
this, we need to simulate from the logistic regression model.

simulate.from.logr = function(x, coefs) {
require(faraway) # For accessible logit and inverse-logit functions
n = nrow(x)
linear.part = coefs[1] + x ¥%x% coefs[-1]
probs = ilogit(linear.part) # Inverse logit
y = rbinom(n,size=1,prob=probs)
return(y)

6The factor of two is so that the deviance will have a x? distribution. Specifically, if the
model with p parameters is right, the deviance will have a x? distribution with n — p degrees
of freedom.

"This is not possible when there are multiple observations with the same input features,
but different classes.

8AIC is of course the Akaike information criterion, —2¢ + 2¢, with ¢ being the number
of parameters (here, ¢ = 3). AIC has some truly devoted adherents, especially among non-
statisticians, but I have been deliberately ignoring it and will continue to do so. |Claeskens
and Hjort| (2008]) is a thorough, modern treatment of AIC and related model-selection criteria
from a statistical viewpoint.
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Now we simulate from our fitted model, and re-fit both the logistic regression
and the GAM.

delta.deviance.sim = function (x,logistic.model) {
y.new = simulate.from.logr(x,logistic.model$coefficients)
GLM.dev = glm(y.new ~ x[,1] + x[,2], family="binomial")$deviance
GAM.dev = gam(y.new ~ lo(x[,1]) + lo(x[,2]), family="binomial")$deviance
return(GLM.dev - GAM.dev)

}

Notice that in this simulation we are not generating new X values. The logistic
regression and the GAM are both models for the response conditional on the
inputs, and are agnostic about how the inputs are distributed, or even whether
it’s meaningful to talk about their distribution.

Finally, we repeat the simulation a bunch of times, and see where the ob-
served difference in deviances falls in the sampling distribution.

> delta.dev = replicate(1000,delta.deviance.sim(x,logr))

> delta.dev.observed = logr$deviance - gam.l1$deviance # 9.64
> sum(delta.dev.observed > delta.dev)/1000

[1] 0.685

In other words, the amount by which a GAM fits the data better than logistic
regression is pretty near the middle of the null distribution. This is typical, in
quite compatible with logistic regression being true. Since the example data
really did come from a logistic regression, this is a relief.
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Amount by which GAM fits better than logistic regression
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Figure 2: Sampling distribution for the difference in deviance between a GAM

and a logistic regression, on data generated from a logistic regression. The
observed difference in deviances is shown by the dashed horizontal line.

12



	Logistic Regression
	Likelihood Function for Logistic Regression
	Logistic Regression with More Than Two Classes

	Newton's Method for Numerical Optimization
	Newton's Method in More than One Dimension

	Generalized Linear Models and Generalized Additive Models
	Generalized Additive Models
	An Example (Including Model Checking)


