
Take-Home Final Exam: Mining Regulatory

Modules from Gene Expression Data

36-350, Data Mining; Fall 2009∗

Due at 5 pm on Tuesday, 15 December 2009

There are three problems, each with several parts. All three
problems are worth 100 points. Please read the background material
and the problem statements carefully before you begin. Include all
your code.

Each problem will be curved, and there will be a curve for the
over-all test as well.

This is a take-home examination. I am trusting you to abide by
the university’s policy on cheating and plagiarism while working on it
(see http://www.cmu.edu/policies/documents/Cheating.html).

1 Introduction: Biological Background

1.1 Proteins, Gene Expression, Transcription

The crucial molecules in cells are proteins. Cells use them to build structure,
to run the chemical reactions which give a cell its energy, to carry signals across
the cell, to respond to signals with physical or chemical changes, to regulate
what passes through the cell’s membranes (including its surface) and to control
what the cell sticks to. Specialized cells use proteins to do things like carry
oxygen to other cells, produce hair or silk (both proteins themselves), etc., etc.

Proteins are themselves made up of smaller molecules called amino acids
strung together in a chain. (The chain folds up on itself in complicated ways,
depending on the amino acid sequence, giving proteins distinct shapes.) The
central insight of molecular biology is that the information which tells an or-
ganism how to string amino acids together to make proteins comes from an-
other kind of molecule called DNA. DNA is assembled from strings of smaller
molecules called bases, and the sequence of amino acids in a protein mirrors the
sequence of bases in a particular piece of DNA, the gene which codes for that
protein. DNA actually comes in large molecules called chromosomes, each of
which contains many genes. Gene expression is the cellular process by which

∗Based on material prepared by Dr. Timothy Danford

1

http://www.cmu.edu/policies/documents/Cheating.html

genes are decoded into their proteins. The process of expression has two distinct
steps. First, genes are transcribed into an intermediate form (mRNA1), the
carbon copying sheet to DNA’s plain paper). Second, the intermediate mRNA
is translated into the corresponding protein.

Ideally, a biologist interested in measuring the structure and function of a
cell (or population of cells) would measure the varying amounts of different
proteins present in those cells at different points of the cell’s lifecycle, or when
the cells were exposed to different stimuli or stresses. However, for technical
reasons, direct measurements of proteins is difficult — instead, biologists resort
to measuring the process of gene expression as a proxy. In particular, if a large
amount of the intermediate mRNA form of a gene is present in the cells then
this is a clue that (perhaps) the corresponding protein is abundant as well.

Because biologists are so interested in measuring the expression of genes
(again, as a proxy for proteins), they have developed experimental techniques by
which the expression of all genes in a genome can be measured simultaneously2.
For each gene in the genome, the biologist measures the “intensity” of that
gene’s expression — a real number whose value is related to the abundance
of the gene’s transcript in a population of cells. A collection of expression
experiments forms a data matrix: the rows are genes, with one row for each
gene in an organism, and the columns are the experiments.

1.2 Co-expression and Gene Modules

The first thing biologists want to know is which genes have similar patterns of
expression across experiments — which genes are co-expressed. This usually
indicates deeper similarities between the genes or their proteins. For instance
they might be on the same pathway, a set of proteins which interact in sequen-
tial or regular ways, in order to communicate a message or perform a function
within the cell3. Since pathways function as a unit, it doesn’t no good to make
only one of the proteins in the pathway — all of them are needed. Thus we
expect all the genes coding for proteins in a common pathway to be co-expressed.

Groups of co-expressed genes are sometimes referred to as modules in the
biology and bioinformatics literature. A module is a collection of genes which
share a common pattern of expression in a common set of experimental con-
ditions. Notice that the genes in a module do not have to be co-expressed in
all experimental conditions — the function of the module may only be active
in some experiments or some kinds of cells. The genes in a module coding for
a pathway which responds to arsenic, for instance, should be co-expressed in

1RNA is a class of molecules very similar to, but slightly different than, DNA. The “m”
stands for “messenger” and indicates the functional role of these RNA molecules.

2Exactly how these experiments are performed isn’t relevant to this exercise; if you’re inter-
ested, try searching for the phrases ”gene expression microarrays” or ”transcript sequencing”
in your favorite search engine.

3An example of such a pathway is a metabolic pathway, where a sequence of chemical
reactions to breakdown a chemical and provide energy for the cell are catalyzed by a set of
proteins, or conversely in which some useful chemical is built up from other molecules at a
cost of energy.

2

experiments where we expose the cells to arsenic, but not necessarily in other
experiments.

1.3 Transcriptional Regulation

But why should we expect to see genes co-expressed at all? How does the cell
actually effect a common expression pattern for a set of functionally related
genes? The answer lies in the process of transcriptional regulation.

Transcription, the key first step in gene expression, doesn’t just happen
randomly or haphazardly. Each gene is “turned on” by a complex transcriptional
machinery which interacts with signals in the DNA sequence of the gene itself.
Genes which share a common function (and are part of the same module) will
have the same, or similar, versions of these DNA signals — and so they will be
affected by the transcriptional machinery in the same way, and be expressed in
the same experiments.

The transcriptional machinery is itself composed of proteins, which are them-
selves coded for by genes and must be expressed. Genes coding for components
of transcription mechanisms are called transcription factors, and are often
co-expressed with the genes whose transcript they regulate. Fr example, if gene
A is a transcription factor which activates Gene B, then when Gene A is ex-
pressed we should see a corresponding increase in the expression of Gene B.4

There can be more complicated set-ups as well, like a gene C whose expression
requires both genes A and B, but not either in isolation. In that case, if gene A
is pretty much always (or “constitutively”) expressed, we’d tend to find gene C
is more co-expressed with gene B than with gene A.

A tighter classification of genes beyond co-expression is co-regulation —
a co-regulated set of genes is co-expressed because they share a common set
of regulatory DNA signals to attract a common set of transcription factors.
A module is co-regulated if all the genes in the module share a common set
of regulatory transcription factors which together control the module. The
discovery of co-regulated modules, and the transcription factors which regulate
them, is a fundamental goal of the field of functional genomics.

Co-expression is about an association between the expression levels of genes;
it’s just about probability distributions. Co-regulation on the other hand is
a causal idea — it says there are shared causes for the expression levels of
the co-regulated genes. Co-regulation is usually investigated from experimental
rather than just observational data. That is, biologists experimentally change
the expression of selected transcription factors, and see which genes’ expression
levels change in response. The crude but reliable way of doing this is to engi-
neer knock-out strains of organisms, which are simply missing the gene for a
given transcription factor. Because the gene is completely missing, it can’t be

4One way this can work: gene A codes for a protein which attaches itself to the chromosome
near gene B, and which preferentially binds to the proteins which actually transcribe DNA
into mRNA. Thus, expressing gene A increases the rate at which gene B gets expressed. If
by contrast gene A’s protein likes to attach itself directly to gene B on the chromosome, this
tends to interfere with transcribing gene B.

3

expressed, and (assuming the organism lives to express any genes at all!) biol-
ogists can them compare the expression levels of other genes in the knock-outs
to the expression of those same genes in normal control organisms.

1.4 Data and Objectives

In this exam, we will walk you through a few of the basic tasks involved in
identifying gene modules and their common regulators. As you will see, much
of what you have learned applies immediately to discovering functional modules.

All the data comes from expression measurements in yeast, which are well-
studied organisms both because they are economically important5 and because
they are easy to experiment on (grow rapidly in vast quantities, easy to manip-
ulate, etc.). The standard strain of yeast used for these experiments descends
from one use by brewers. Its genome is well-studied, containing about 6000
genes with a standardized naming scheme6. The set of transcription factor
genes has been known for at least ten years, and there are a wealth of whole-
genome datasets available from publicly-funded research. We will work with
two of them, which you can find on Blackboard.

Both data sets are tab-delimited text files, expressdb cleaned.txt and
HuIyer TFKO expression.txt, which you can read in as follows:

edb <- read.table("expressdb_cleaned.txt",header=TRUE,row.names=1,sep="\t")

This tells R where to find the file, that the first line of the file contains column
names, that the first column contains row names, and that entries are separated
by tabs. In each file, the columns (features) correspond to experiments, and
the rows to genes. The actual entries in the data frame show how much of each
gene was expressed in each experiment.

expressdb cleaned.txt compiles data from 439 observational expression
experiments done by different labs. (The complete dataset is called “Ex-
pressDB,” and was independently curated and redistributed by a lab at Har-
vard University.) Each of the 5468 rows corresponds to a different gene (with
its standardized name), and each column to an experiment (with a name and,
here, a number). These experiments were all done on yeast which are, for our
purposes, genetically unmanipulated, so differences in expression levels between
experiments are due to differences in the experimental conditions that the cells
were grown under (nutrients, chemical or physical stresses), or noise. The data
set is not normalized, so the numbers in different columns are not (necessarily)

5Beer! Beer! Beer! Beer!
6In this scheme, the names have the format Yx{RL}###{CW} . The x is a single letter

that indicates the chromosome of the gene (chromosome 1 is ’A’, chromosome 2 is ’B’, etc.),
followed by a letter (either R or L) which indicates which side of the chromosome the gene is
on. The next three digits indicate the order of the gene on that side of the chromosome, and
the final letter (either C or W) indicates the direction that the gene is pointing (“C” stands
for Crick and “W” for Watson, the scientists credited with the discovery of the structure of
DNA). YAL010C is the 10th gene in on the left arm of the first chromosome, which points in
the “Crick” direction.

4

directly comparable — a value of 1.0 in one experiment may be equivalent to a
value of 4.5 in another.

The second data set comes from a 2007 paper by Zhanzhi Hu and his col-
laborators, and is a “knockout” expression atlas for all of the 269 transcription
factors in the yeast genome. That means that, for each transcription factor,
they engineered a strain of yeast which knocked out just that gene, and then
measured the resulting expression of all the remaining genes (6429 of them)7.
Here the values are relative expression levels — the logarithm of the ratio of
the expression in the knockout strain to that in an unmodified strain measured
under the same conditions. (So negative values mean lower expression in the
knockouts than in the controls, and positive values mean higher expression lev-
els8.) As with the first experiments, however, you cannot assume that the values
are normalized or comparable across experiments.

Both data sets have missing values (marked NA). That is, some genes’ ex-
pression levels were not recorded for some experiments. Missing values are a
fact of life in expression analysis (and real data generally). It is not the case
that the gene wasn’t expressed, just that the gene’s expression wasn’t measured
correctly. Your code needs to be able to cope with this.

If you want to learn more about proteins, genes, and gene regulation, an
excellent place to start is Gonick and Wheelis (1991). Baldi and Brunak (2001)
has a lot of material about applying data-mining techniques to problems in
bioinformatics. There is an especially large literature on discovering modules;
Bar-Joseph et al. (2003) was an early entry, and one of the data sets comes
(ultimately) from that paper.

2 Problems

1. Calculating Gene Expression Similarity The first task is to develop a mea-
sure of gene expression similarity. A gene expression similarity func-
tion is a method which takes three inputs: two genes, and a set of exper-
iments (possibly the complete set of experiments). It returns a numerical
indicating the similarity or difference in expression between the two genes
across the indicated experiments only.

One of the simplest tasks you can use a gene expression similarity function
for is to rank genes by their similarity with respect to a reference gene, from
most similar to least similar. Even before the identification of modules and

7Every gene in the first data set also has a row in the second. The second data set also has
rows for some genes omitted from the first for various reasons (e.g., too many missing values).
You can ignore the extra rows if you want.

8Higher expression levels are perfectly reasonable, since some transcription factors regulate
their target genes by repressing them — like putting a light on a dimmer. If gene A represses
gene B, and you remove A, you would expect, all else being equal, to see the expression levels
of B go up. One way things could not be equal was if gene C is an even stronger repressor
of B than A is, but A also repressed C. Plainly, this sort of thing gets very complicated very
fast.

5

regulators, biologists will often wish to ask the question “what genes are
most similar to Gene X?”

(a) Write an R function for the calculation of a gene similarity function.
If you need to do any pre-processing of the data beforehand, describe
it, and include the code for it.

(b) Discuss what normalization, if any, was necessary in order to create
your similarity function.

(c) What other properties does your similarity function possess? Is it
symmetric (i.e. does it produce the same result when you switch
the gene arguments)? What value does it return if you pass it two
identical rows (genes) as arguments?

(d) Use your similarity function to produce a ranking of genes by their
similarity to gene YPR035W.

(e) Describe a method for determining a ranking cutoff — that is, a level
of similarity so low that we can reasonably discount the idea that two
such dissimilar genes are co-expressed.

(f) Extra credit: Implement the method you just described. Which
genes have above-threshold similarity to YPR035W?

2. Discovering Co-expressed Modules For the next task, you will use your
gene similarity function to discover co-expressed sets of genes in the Ex-
pressDB dataset. As discussed above, a co-expressed module is a collection
of genes whose expression is similar across a collection of experiments. In
our case, we will ask you to focus (again) on YPR035W — we are interested
in the module or modules which contain this gene in different subsets of
experiments.

(a) Write an R function which takes a gene and a set of experiments
as input, and produces the module (set of genes) as output which
are “co-expressed” with the given gene in the indicated experiments.
Note that you do not have to use the similarity measure from the
previous problem, but you can.

(b) What properties does your module discovery algorithm have? If you
ran it on gene A (producing as output module A), and then chose
a gene B not in module A as second input — would the output of
the second run, module B, overlap with module A? That is, are the
modules you produce disjoint?

(c) Use the function to find the module containing YPR035W in the group
of experiments numbered 23–30, 61–65, 103–112 and 287–291 (this
is a single group of related experiments, not four separate ones).
Repeat this using experiments 359–388. Are the genes within the
two modules the same? Overlapping? Completely different (aside
from YPR035W itself)?

6

(d) Discuss the design of a “module discovery” method — this is a
method which takes only a set of experiments as input, and pro-
duces all the relevant sets of genes which form modules with respect
to these experiments.

(e) Extra credit: Implement and run your module discovery method.
Include the results.

3. Discovering Co-regulated Modules

(a) Write an R function to discover the regulators of a module — this
is a method which takes as input a module (a set of genes), and
produces a list of all regulators (these can be experiment names from
the Hu/Iyer dataset) which are regulators of the genes in that module.

(b) Discuss the characteristics of this function — are any of the regulators
discovered for the module part of the module itself? (Note that self-
regulation, where a transcription factor regulates both a set of target
genes and itself, is a well-known biological phenomenon.)

(c) Discover the regulators of one of the modules that you discovered for
gene YPR035W in problem 2.

(d) Given that regulators can regulate each other as well as other genes,
describe a method by which you might try to discover the regula-
tory network of the cell — this is the complete set of regulatory
interactions between transcription factor genes and their targets.

(e) Extra credit: Implement and run your regulatory network discov-
ery method.

References

Baldi, Pierre and Søren Brunak (2001). Bioinformatics: The Machine Learning
Approach. Cambridge, Massachusetts: MIT Press, 2nd edn.

Bar-Joseph, Ziv, Georg K Gerber, Tong Ihn Lee, Nicola J. Rinaldi, Jane Y. Yoo,
François Robert, D. Benjamin Gordon, Ernest Fraenkel, Tommi S. Jaakkola,
Richard A. Young and David K. Gifford (2003). “Computational discovery
of gene modules and regulatory networks.” Nature Biotechnology , 21: 1337–
1342. doi:10.1038/nbt890.

Gonick, Larry and Mark Wheelis (1991). The Cartoon Guide to Genetics. New
York: HarperCollins, 2nd edn.

7

http://dx.doi.org/10.1038/nbt890

	Introduction: Biological Background
	Proteins, Gene Expression, Transcription
	Co-expression and Gene Modules
	Transcriptional Regulation
	Data and Objectives

	Problems

