
Homework 8: Additive Models and Backfitting

36-350, Fall 2009

Due at 5pm, Monday, 16 November 2009

In this assignment, you will build a simple function to fit additive models
through backfitting, and apply it to a simulated data set (where you know what
it should give you), and a real one (where you don’t). This will build character.
In principle, you could write something at least as powerful as mgcv::gam or
gam::gam, but I don’t want to build that much character.

Whenever giving numerical values, do not use more precision (significant
figures) than you can justify.

1. Write a function which takes as inputs two vectors, say x and y, centers
y, and returns a smoothing of the centered y values over x. You can call
any nonparametric smoothing method you like; however, your function
must automatically adjust any control settings (e.g., bandwidth); fixed,
data-independent control settings will only get you partial credit.

Check that your centered smoothing function is working by running it
with x=seq(-1,1,length.out=100) and three different responses:

(a) y=rnorm(100,1,0.1)

(b) y=x^2+rnorm(100,0,0.1)

(c) y=tanh(5*x)+0.1*rt(100,3)

For each case, check that the output is centered, and that it has the
proper shape. Include plots comparing your smoothing curves to what
they should be.

Debugging hint: Some smoothing functions re-order the data; this helps for
drawing curves on scatterplots, but is not what we want. Make sure that
your vector of returned fitted values is in the same order as the original
data.

2. Important Note: In the first version of the handout for lecture 21, and
I believe in lecture, I said that the partial residuals should be kept fixed
through each iteration of back-fitting. This is wrong; I must have been
having a (prolonged) senior moment. The lecture notes online have been
corrected.

1



(a) Write a function to do one iteration of backfitting. It should take
as arguments an n × p matrix of input values, a length-n vector of
residuals, and an n × p matrix of partial response values. It should
cycle through the p variables, calculating the partial residuals for
each and smoothing them against the corresponding input features.
It should return the new n× p matrix of partial responses.

(b) Write a function, am, for fitting additive models. It should take as
inputs an n × p matrix of x values, a length-n vector of y values, a
numerical tolerance, and maximum number of backfitting iterations.
Your function should halt and return either when none of the fitted
values changes by more than the tolerance, or when it reaches the
maximum number of backfitting iterations. It should return a list
with the following components:

• a vector of fitted response values
• a vector of residuals
• the over-all mean
• an n× p matrix of partial responses
• the n× p matrix of input features
• a flag indicating whether it converged or ran out of iterations.

You may include other elements in the return value if they seem
helpful.

(c) i. Generate a 100× 3 matrix where the first column is uniform on
[−1, 1], the second column is standard Gaussian, and the third
column is exponential with rate 2. Generate a length 100 vector
as tanhx1 + x2

2 + 0.1η, where η has a t distribution with three
degrees of freedom. Fit an additive model to this data.

ii. Plot the partial response functions. Add curves showing what
the partial response functions ought to be. How well do they
match?

iii. Test that the partial response matrix does not change apprecia-
bly under further backfitting.

iv. Fit the same data with gam from mgcv, and plot the those partial
response curves as well; how well do the results match?

3. Write a function, predict.am, for predicting responses to new inputs from
an additive model. Your function should take two arguments: a list of the
kind produced by your am function, and an m × p matrix of new input
values. Your function should return a vector of length m of predicted
response values.

You cannot assume that the new input values match old ones. You must
interpolate (or extrapolate).

Make sure your function checks that the dimensions of the new data are
compatible with those of the fitted model.

2



(a) Check that when the new data is equal to the x argument of the
training data, the new predictions match the fitted responses. (In-
serting a special test to check for old data will result in your getting
no credit for this part.) If you are unable to reproduce the fitted
values exactly, explain why, and how to make sure the discrepancy is
kept under control.

(b) Check that when given a sequence of testing points between two
training points, the predicted responses smoothly interpolate between
the fitted values at the end-points.

(c) Check that when given test points outside the training region, but
not far outside, the predictions extrapolate reasonably.

4. The data set ozone (in the CRAN package faraway, among other places)
records the level of ozone (O3), one of the toxic components of smog, and
some covariates, as recorded daily over 1976 in Los Angeles. (Some days
with missing data have been edited out.) The features are as follows:

O3 Daily maximum ozone concentration (parts per billion)
vh Height above sea-level at which pressure equaled 500 millibars (meters)
wind Wind speed (miles per hour)
humidity Humidity (percentage)
temp Daily high temperature (degrees Farenheit)
ibh Height of the bottom of the inversion layer over LAX airport (feet)
dpg Difference in atmospheric pressure between LAX and Daggett, California (mm Hg)
ibt Temperature at the base of the inversion layer over LAX (degrees Farenheit)
vis Visibility at LAX (miles)
doy Day of the year

(Look up “inversion layers” if you don’t know what they are or what they
have to do with smog.)

(a) Divide the data at random into a training set and a validation set,
the latter containing 10% of the data.

(b) Use your code to fit an additive model to the training set, regressing
O3 on temp, ibh and ibt. Plot the partial response functions, and
describe, in words, the relationships they imply between the three
input features and the response. How big is the root mean squared
error? Plot the residuals (not partial residuals) against the input
features: do they look independent? Include all the commands you
run.

(c) Use your code to fit another additive model for O3, regressing it on all
the other features except doy. Repeat the analysis for the previous
part.

3



(d) Which model does a better job of predicting the testing data?

5. Extra credit Modify your fitting function so its returned object has the
class "am". (See help(class).)

(a) Write fitted.am and residuals.am functions. These should take
as arguments am-class objects, and return the appropriate vectors.
Verify that fitted and residuals work properly when called on am
objects.

(b) Write print.am and summary.am functions. You should decide what
information they give; look at the corresponding functions for lm and
npreg.

(c) Write a plot.am function to automate plotting of the partial response
functions. Ideally, the user should be able to plot any arbitrary sub-
set of the partials, with the function setting up the graphics device
appropriately. (Look at the plots for GAMs in lecture 21, thought it
doesn’t have to look exactly like that.)

(d) Re-write your am function so that it stores a list of p partial response
functions, in addition to the n× p partial response values. Re-write
predict.am so that it uses these functions. (You may want to re-
write centered.smoothing as well.) Verify that it still works.

4


