
Lecture 1: Similarity Searching and Information

Retrieval

36-350, Data Mining

26 August 2009

Readings: Principles of Data Mining, ch. 1, and sections 14.1
and 14.3.0–14.3.1.

One of the fundamental problems with having a lot of data is finding what
you’re looking for. This is called information retrieval.

The oldest approach is to have people create data about the data, metadata,
to make it easier to find relevant items. Library catalogues are like this (Figure
1): people devise detailed category schemes for books, magazines, etc. For
instance, a book has a title, one or more authors (possibly “anonymous” or
pseudonyms), a publisher, a place of publication, a date of publication, possibly
an ISBN, and its contents belong to one or more subject topics, with a lot of
work going in to designing the set of subject-matter topics. A magazine doesn’t
have an author, it has multiple volumes with multiple dates, and it has an ISSN
instead of an ISBN, if it has a number like that at all. (Nowadays we’d call this
sort of scheme an ontology.) Having fixed on a scheme like this, people would
actually examine the objects, decide which categories they belong to, and write
down that information along with their location on the shelves, and then copy
this information so that it appeared in multiple places — by title, by author, by
subject, etc. This worked OK for a few thousand years, but it needs people, who
are slow and expensive and don’t scale. It’s not feasible for searching census
records, or purchase histories at an online store, or the Web.

The next oldest approach is Boolean queries: things like “all census records
of Presbyterian or Methodist plumbers in Rhode Island with at least two but
no more than five children”. The first electronic data-processing machines were
invented about 120 years ago to do searches like this. The advantages are
that it’s very easy to program, it doesn’t need a lot of human intervention,
and sometimes it’s exactly what you want to do, say if you’re taking a census.
But there are disadvantages: most people don’t think in Boolean queries; it
works best when it’s dealing with structured data, like census records, not
unstructured data like most documents on the Web; and it’s got no sense of
priority. Suppose you’re loking for a used car, thinking of buying a 2001-model-
year Saturn, and want to know what problems they’re prone to. Imagine doing a
Boolean search of the whole Web for “Saturn AND 2001 AND problems”. Some

1

Figure 1: Example of metadata (from cameo.library.cmu.edu). This is infor-
mation about the book, which is not part of its actual contents. Notice that this
is structured: every book in the catalogue will have a title, an author (possibly
“anonymous”), one or more subjects, a location, etc. All of this information is
humanly-generated.

2

Figure 2: Example of the structured meta-data provided with the New York
Times Annotated Corpus. Notice in particular the subject classifications.
From http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=
LDC2008T19. (Text and annotations copyright by the New York Times Co.,
used here for educational purposes per the terms of the licensing agreement.)

of those documents will be just what you want, but you’ll also get a lot about
the planet Saturn, about the novel 2001: A Space Odyssey (set at Saturn), and
so on.

This is where searching by similarity comes in. Suppose you can find
one Web page which is about problems in 2001-model Saturns. We’re going to
see today how you can tell your computer “find me more pages like this”. We
will see later how you can avoid the step of initially lucking into the first page,
and how you can use the same sort of trick to search other kinds of data —
say images on the Web, or hospital patient records, or retail transactions, or
telephone-call records.

To illustrate these ideas concretely, we’re going to use a part of the New
York Times Annotated Corpus (Sandhaus, 2008). This consists of 1.8 × 106

stories from the Times, from 1987 to 2007, which have been hand-annotated
with metadata about their contents. (See Figure 2.) We are going to look at
methods for information retrieval which do not use the metadata, but having it
there will help us determine how well those methods are working. You will get
to use a small part of this data set in the homework.1

1The metadata and annotations are in a language called XML. You will not have to learn
it.

3

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2008T19
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2008T19

1 Representation

The crucial first step is to chose a representation of the data. There are multiple
considerations here.

• The representation ought to be something our methods can work with
easily.

• The representation ought to be something we can easily generate from the
raw data.

• The representation ought to highlight the important, helpful aspects of
the data, and suppress others. (If the representation didn’t ignore some
aspects of the data, it would be the data again.)

One of the things we’ll see is that getting a good representation — trading these
concerns off against each other — is at least as important as picking the right
algorithms.

For today, we are searching for documents by similarity, so our data are
natural-language documents.

We could try to represent the meaning of the documents. Look Figure 2
again. The abstract reads “Chairs of the 1920s and 30s are featured at Johnson
& Hicks, new home furnishing store in TriBeCa”. We could try to represent the
meaning here in something like logical notation:

exhibit.of(chairs(age-1920--1930),Johnson&Hicks,now)
is.a(Johnson&Hicks,store,type="home furnishing")
location.of(Johnson&Hicks,TriBeCa)
begin.date(Johnson&Hicks,now)

and then we’d probably want to go on to tell the system that chairs are a
kind of furniture, where TriBeCa is, that chairs that old are a kind of vintage
product, etc. If we could do this, there are tons of methods for automated logical
reasoning which we could use to find stories about displays of contemporary
chairs, or vintage lamps, etc. The snag is that extracting this sort of meaning
from the text alone, without using human readers, turns out to be insanely
hard. People in artificial intelligence have been saying it’ll happen within the
next twenty years for more than fifty years; so we’ll wish them good luck and
leave them to their work.

A less ambitious sort of representation which still tries to get more or less
explicitly at meanings would be to draw up a big list of categories, and then
go over the documents and check of which categories they fall in to. This is
basically what the annotating meta-data does for the Times corpus. Social
scientists sometimes do this and call it coding the documents; they’ll often
code for the emotional tone or valence as well. (This tends to be done with
smaller, more focused sets of documents, so they can get away with smaller
sets of categories.) Once we have this, our representation is a bunch of discrete
variables, and there are lots of methods for analyzing discrete variables. But,

4

again, extracting this sort of information automatically from the text is too hard
for this to be useful to us.2 In fact, the best automatic methods for this sort of
thing use the bag-of-words representation which is coming up next.

1.1 Textual features

We don’t know enough about how people extract meanings from texts to be
able to automate it, but we do know that we extract meanings from texts —
and different meanings from different texts.3 This suggests that we should be
able to use features or aspects of the text as proxies or imperfect signs of the
actual meanings. And the text is right there in the computer already, so this
should be easy. We just have to decide which textual features to use.

Think of what goes on in trying to distinguish between Saturn the brand of
car, Saturn the planet, Saturn the mythological figure, Saturn the type of rocket,
etc. Documents about all of these will of course contain the word “Saturn”, so
looking for that word wouldn’t help us tell them apart. However, the other words
in the document will tend to differ. “Saturn” together with words like “automo-
bile”, “wheels”, “engine”, “sedan” tends to indicate the car, whereas words like
“rings”, “hydrogen”, “orbit”, “Titan”, “Voyager”, “telescope”, “Cassini”, etc.,
indicate the planet. This suggests a very simple representation of the document:
all the different words it contains.

That representation is actually a little too simple to work well in practice.
The classic bag-of-words (BoW) representation is to list all of the distinct
words in the document together with how often each one appears. The name
comes from imagining printing out the text, cutting the paper into little pieces
so each word is on its own piece, and then throwing all the pieces into a bag.
This is a definitely set of purely textual features (one per distinct word), and
it’s not hard for us to calculate it automatically from the data. What remains
to be seen is whether we can actually do useful work with this representation.

Vectors There are actually two different ways you could try to code up the
bag-of-words, at least as I’ve described it so far. To illustrate this, let’s look at
the full text of the story featured in Figure 2 and see how to turn it into a bag
of words.

Lisa Weimer, right, opened her home furnishings store, Johnson
& Hicks, in TriBeCa in September, and discovered her passion for
chairs, especially those from the 1920’s and 30’s. ”I love simple,
clean lines and the richness of woods,” said Ms. Weimer, who was
once a home furnishings buyer at Bergdorf Goodman.

A pair of French 1930’s walnut chairs with checkerboard backs,
above, are $8,500; steel folding chairs from the 1930’s, originally

2However, we will see later that it is sometimes possible to trick people into doing this
coding work for us for free.

3Conversely, different people extract different meanings from the same texts, raising an-
other set of issues, which I will ignore.

5

X 1920s 1930s a above
9 1 3 3 1

and are at backs bergdorf
4 3 3 1 1

buyer chairs checkerboard clean discovered
1 4 1 1 1

especially ferry folding for franklin
1 1 1 2 1

french from furnishings goodman her
2 2 2 1 2

hicks home hudson i in
2 2 1 1 2

information is johnson lines lisa
1 1 2 1 1

love ms of on once
1 1 2 1 1

opened originally pair passion richness
1 1 1 1 1

right said september simple steel
2 1 1 1 1

store street tables the there
1 2 1 3 1

those tribeca used walnut was
1 1 1 1 1

weimer who with woods
2 1 1 1

Table 1: Counts of the distinct words in the story, mapping all numbers to “X”.

used on a French ferry, are $575 each; tubular steel dining chairs
upholstered in Ultrasuede, right, are 12 for $14,000. There are 500
chairs, and 100 tables. Johnson & Hicks is at 100 Hudson Street at
Franklin Street. Information: (212) 966-4242.

Throwing away punctuation, and treating all numbers as just “X”, we get
the word-counts in Table 1

There are (at least) two different data structures we could use to store this
information. One is a list of key-value pairs, also known as an associative
array, a dictionary or a hash. The keys here would be the words, and the
associated values would be the number of occurrences, or count, for each word.
If a word does not appear in a document, that word is not one of its keys. Every
document would have, in principle, its own set of keys. The order of the keys is
entirely arbitrary; I printed them out alphabetically above, but it really doesn’t
matter.

6

It turns out, however, that it is a lot more useful to implement bags of words
as vectors. Each component of the vector corresponds to a different word in
the total lexicon of our document collection, in a fixed, standardized order.
The value of the component would be the number of times the word appears,
possibly including zero.

We use this vector bag-of-words representation of documents for two big
reasons:

• There is a huge pre-existing technology for vectors: people have worked
out, in excruciating detail, how to compare them, compose them, simplify
them, etc. Why not exploit that, rather than coming up with stuff from
scratch? (How would you measure the distance between two associate
arrays?)

• In practice, it’s proved to work pretty well.

To illustrate, I have taken ten random documents from the Times corpus —
five of them about music, five about the arts (excluding music) — and turned
them all into bag-of-words vectors.4 There were 700 distinct words in these ten
documents (excluding “singletons” which only appeared in a single text). This
means that each document is represented by a vector with 700 components —
that we have 700 features. Obviously I can’t show you these vectors, but I will
show a few of these components (Table 2).

Things to notice:

• The data take the form of a matrix. Each row corresponds to a distinct
case (or instance instance, unit, subject, . . .) — here, a document
— and each column to a distinct feature. Conventionally, the number of
cases is n and the number of features is p. It is no coincidence that this
is the same format as the data matrix X in linear regression.

• Look for contrasts between the documents about music and those about
art. Some of them (“camera”, “hit”, “melody”) you could probably have
guessed, if you’d thought about it — but what’s going on with “husband”
and “wife”, or “imagined”?

• The word “a” seems to appear more in stories about art than in stories
about music. Why might this be? Do we really want to pay attention to
it?

• Does it really make sense to distinguish here between “photographs” and
“photography”?

2 Measuring Similarity

Right now, we are interested in saying which documents are similar to each
other because we want to do search by content. But measuring similarity

4You will get these documents, and more, in the first problem set.

7

a against but camera gallery hit husband images imagined
music.1 13 0 3 0 0 0 0 0 0
music.2 18 0 7 0 0 2 0 0 0
music.3 33 0 2 0 3 1 0 0 0
music.4 28 0 11 0 0 1 0 0 0
music.5 10 0 0 0 1 0 0 0 0
art.1 20 0 3 2 0 0 1 0 0
art.2 51 0 9 1 4 0 0 2 1
art.3 55 1 6 11 1 0 2 8 0
art.4 64 2 7 0 0 0 0 0 2
art.5 11 1 1 0 0 0 0 2 0

instruments melody new old photographs photography songs wife
music.1 3 1 0 0 0 0 0 0
music.2 0 0 1 1 0 0 0 0
music.3 0 0 2 1 0 0 3 0
music.4 0 0 2 0 0 0 0 1
music.5 0 1 2 1 0 0 1 0
art.1 0 0 1 0 0 1 0 1
art.2 0 0 3 3 1 4 0 1
art.3 1 0 5 2 0 3 0 2
art.4 0 0 1 0 0 0 0 2
art.5 0 0 0 0 1 1 0 0

Table 2: Bag-of-words vectors for five randomly selected stories classified as
“music”, and five classified as “art” (but not music), from the Times corpus.
The table shows a selection of the 700 features.

8

— or equivalently measuring dissimilarity or distance — is fundamental to
data mining. Most of what we will do will rely on having a sensible way of
saying how similar to each other different objects are, or how close they are in
some geometric setting. Getting the right measure of closeness will have a huge
impact on our results.

This is where representing the data as vectors comes in so handy. We al-
ready know a nice way of saying how far apart two vectors are, the ordinary or
Euclidean distance, which we can calculate with the Pythagorean formula:

‖~x− ~y‖ ≡

√√√√ p∑
i=1

(xi − yi)
2

where xi, yi are the ith components of ~x and ~y. Remember that for bag-of-words
vectors, each distinct word — each entry in the lexicon — is a component or
feature.

(The Euclidean length or Euclidean norm of any vector is

‖~x‖ ≡

√√√√ p∑
i=1

x2
i

so the distance between two vectors is the norm of their difference ~x−~y. Equiv-
alently, the norm of a vector is the distance from it to the origin, ~0.)

Now, there are other ways of measuring distance between vectors. Another
possibility is the taxicab or Manhattan distance

p∑
i=1

|xi − yi|

It’s a perfectly good distance metric; it just doesn’t happen to work so well for
our applications.

2.1 Normalization

Just looking at the Euclidean distances between document vectors doesn’t work,
at least if the documents are at all different in size. Instead, we need to nor-
malize by document size, so that we can fairly compare short texts with long
ones. There are (at least) two ways of doing this.

Document length normalization Divide the word counts by the total num-
ber of words in the document. In symbols,

~x 7→ ~x∑p
i=1 xi

Notice that all the entries in the normalized vector are non-negative fractions,
which sum to 1. The ith component is thus the probability that if we pick a
word out of the bag at random, it’s the ith entry in the lexicon.

9

Euclidean length normalization Divide the word counts by the Euclidean
length of the document vector:

~x 7→ ~x

‖~x‖

For search, normalization by Euclidean length tends to work a bit better than
normalization by word-count, apparently because the former de-emphasizes
words which are rare in the document.

Cosine “distance” is actually a similarity measure, not a distance:

dcos ~x, ~y =
∑

i xiyi

‖~x‖‖~y‖

It’s the cosine of the angle between the vectors ~x and ~y.

10

3 Practice the Criterion of Truth

I’ve been pretty free with saying that things work or they don’t work, without
being at all concrete about what I mean by “working”. We are going to see
many, many different ways of elaborating on “working”, but for right now, a
first cut is to look at how often the most-similar document is in the wrong class.
(This obviously relies on our having access to pre-assigned classes.)

Best match by similarity measure
Euclidean Euclidean + word-count Euclidean + length

music.1 art.5 art.4 art.4
music.2 art.1 music.4 music.4
music.3 music.4 music.4 art.3
music.4 music.2 art.1 art.3
music.5 art.5 music.3 music.3
art.1 music.1 art.4 art.3
art.2 music.4 art.4 art.4
art.3 art.4 art.4 art.4
art.4 art.3 art.3 art.3
art.5 music.1 art.3 art.3
error count 6 2 3

Table 3: Closest matches for the ten documents, as measured by the distances
between bag-of-words vectors, and the total error count (number of documents
whose nearest neighbor is in the other class).

This shows that normalization definitely helps, but the difference here be-
tween normalizing by word-count and normalizing by Euclidean length is small,
and if anything in the opposite direction from what I promised. That promise
will, however, be fulfilled as we go forward, starting next time when we look at
how to do search and classify documents.

11

Exercises

Do not turn these in, but do think them through.

1. Why is it called the “Manhattan metric” or “taxicab metric”? (Think
before looking this up.)

2. Why do we need to normalize bag-of-word vectors to compare documents
with different sizes?

3. Why does normalization by Euclidean length de-emphasize a document’s
rare words more strongly than normalization by word count? Hint: think
about the relationship between

∑
i |xi| and ‖~x‖.

4. Why is the cosine distance “the cosine of the angle between the two vec-
tors”?

5. Explain how the cosine distance is related to the Euclidean-length nor-
malized distance between two vectors.

References

Sandhaus, Evan (2008). “The New York Times Annotated Corpus.” Electronic
database. URL http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?
catalogId=LDC2008T19.

12

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2008T19
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2008T19

	Representation
	Textual features

	Measuring Similarity
	Normalization

	Practice the Criterion of Truth

