
Lecture 2: More Similarity Searching;

Multidimensional Scaling

36-350: Data Mining

28 August 2009

Reading: Principles of Data Mining, sections 14.1–14.4 (skiping 14.3.3 for
now) and 3.7.

Let’s recap where we left similarity searching for documents. We represent
each document as a bag of words, i.e., a vector giving the number of times
each word occurred in the document. This abstracts away all the grammatical
structure, context, etc., leaving us with a matrix whose rows are feature vectors,
a data frame. To find documents which are similar to a given document Q, we
calculate the distance between Q and all the other documents, i.e., the distance
between their feature vectors.

1 Queries

If we have a document in hand which we like, and we want to find the k doc-
uments closest to it, we can do this once we know the distances between that
document and all the others. But how can we get away from finding that one
good document to begin with?

The trick is that a query, whether an actual sentence (“What are the common
problems of the 2001 model year Saturn?”) or just a list of key words (“problems
2001 model Saturn”) is a small document. If we represent user queries as bags
of words, we can use our similarity searching procedure on them. This is really
all it takes.

1.1 Evaluating Similarity Search

When someone uses a search engine, they have some idea of which of the results
are what they were looking for. In the jargon, we say that the good results
were relevant to the query. There are actually two aspects to finding relevant
documents, both of which are important:

• Most of the results should be relevant; that is, the precision of the search
should be high.

1

• Most of the relevant items should be returned as results; that is, the recall
should be high, too.

Formally, if the search returns k items, r of which are relevant, and there
are R relevant items in the whole corpus of N items, the precision is the ratio
r/k, and the recall is the ratio r/R. (This is for one query, but we can average
over queries.) Notice that r ≤ k, so there are limits on how high the recall can
be when k is small. As we change k for a given query, we get different values for
the precision and the recall. Generally, we expect that increasing k will increase
recall (more relevant things can come in) but lower precision (more irrelevant
things can come in, too). A good search method is one where the trade-off
between precision and recall is not very sharp, where we can gain a lot of recall
while losing on a little precision.

A visual way of representing the precision-recall trade-off is to plot precision
(on the vertical axis) against recall (on the horizontal axis) for multiple values
of k. If the method is working well, when k is small the precision should be high,
though the recall will be limited by k; as k grows, the recall should increase,
moving us to the right, but the recall will fall, moving us down. So the precision-
recall curve should going from somewhere near (1, 0) to somewhere near (0, 1).
The total area under the curve is often used as a measure of how good the
search method is.

Of course, there is nothing magic about changing k; if we have a different
search technique with a tunable setting, we can make a precision-recall curve
for it, too.

Search, Hypothesis Testing, Signal Detection, ROC It is no coincidence
that the difference between precision and recall is very like the difference between
type I and type II errors in hypothesis testing. High precision is like having a
low type I error rate (most of the “hits’ are real); high recall is like having a low
type II error rate (most things which should be hits are).

The same idea applies to signal detection as well, where a type I error
is called a “false alarm” (you thought there was signal when there was just
noise) and a type II error is called a “miss” (you mistook signal for noise). The
precision-recall curves actually come from signal detection theory, where they
are called receiver operating characteristic curves, or ROC curves.

Practice In practice, the only way to tell whether your search-engine’s results
are relevant is to ask actual people (Figure 1). The major services do this with
lab experiments, with special browsers given to testers to ask quiz them on
whether the results were relevant, and by taking random samples of their query
log and having testers repeat the queries to see whether the results were relevant.
Naturally, this use of human beings is slow and expensive, especially because
the raters have to be trained, so the amount of this data is limited — and they
are very reluctant to share it.

Notice, by the way, that when dealing with something like the web, or in-
deed any large collection where users give arbitrary queries, it is a lot easier

2

Figure 1: Search-engine evaluation in practice.
Source: http://icanhascheezburger.com/2007/01/11/
this-is-relevant-to-my-interests-2/.

to estimate precision than recall (how do you find R, the number of genuinely
relevant documents in the whole corpus?).

2 Classification

One very important data-mining task is classifying new pieces of data, that is,
assigning them to one of a fixed number of classes. Last time, our two classes
were “stories about music” and “stories about the other arts”. Usually, new
data doesn’t come with a class label, so we have to somehow guess the class
from the features.1 Two very basic strategies become available as soon as we
can measure similarity or distance.

1. With a nearest neighbor strategy, we guess that the new object is in
the same class as the closest already-classified object. (We saw this at the
end of the last lecture.) Similarity search is in a way just the reverse: we

1If it does come with a label, we read the label.

3

http://icanhascheezburger.com/2007/01/11/this-is-relevant-to-my-interests-2/
http://icanhascheezburger.com/2007/01/11/this-is-relevant-to-my-interests-2/

guess that the nearest neighbor is in the same class (“is relevant”) as the
query.

2. With a prototype strategy, we pick out the “most representative” mem-
ber of each class, or perhaps the average of each class, as its prototype,
and guess that new objects belong to the class with the closer prototype.

We will see many other classification methods before the course is over.
All classification methods can be evaluated on their error rate or mis-

classification rate, which is simply the fraction of cases they get wrong, by
assigning them to the wrong class. (A classifier’s mis-classification rate is also
sometimes just called its inaccuracy.) A more refined analysis distinguishes
between different kinds of errors. For each class i, we record what fraction of
i’s are guessed to be of class j, and get a little matrix called the confusion
matrix. (The diagonal entries show probabilities of correct classifications.) For
two classes, this gives us the type I and type II error rates again — though
which is which is arbitrary.

3 Inverse Document Frequency

Someone asked in class last time about selectively paying less attention to certain
words, especially common words, and more to the rest. This is an excellent
notion. Not all features are going to be equally useful, and some words are
so common that they give us almost no ability at all to discriminate between
relevant and irrelevant documents. In (most) collections of English documents,
looking at “the”, “of”, “a”, etc., is a waste of time. We could handle this by a
fixed list of stop words, which we just don’t count, but this at once too crude
(all or nothing) and too much work (we need to think up the list).

Inverse document frequency (IDF) is a more adaptive approach. The
document frequency of a w is the number of documents it appears in, nw.
The IDF weight of w is

IDF (w) ≡ log
N

nw

where N is the total size of our collection. Now when we make our bag-of-
words vector for the document Q, the number of times w appears in Q, Qw, is
multiplied by IDF (w). Notice that if w appears in every document, nw = N
and it gets an IDF weight of zero; we won’t use it to calculate distances. This
takes care of most of the things we’d use a list of stop-words for, but it also
takes into account, implicitly, the kind of documents we’re using. (In a data
base of papers on genetics, “gene” and “DNA” are going to have IDF weights
of near zero too.) On the other hand, if w appears in only a few documents, it
will get a weight of about logN , and all documents containing w will tend to
be close to each other.

Table 1 shows how including IDF weighting, along with Euclidean length
normalization, dramatically improves our ability to classify posts as either about
music or about the other arts.

4

Normalization Equal weight IDF weight
None 38 52

Word count 39 37
Euclidean length 44 19

Table 1: Number of mis-classifications in a collection of 102 stories from the
Times about music (45 stories) and the other arts (57 stories) when using the
nearest neighbor method, with different choices of normalization and with or
without IDF weighting. (Cf. Fig. 2.) Note that an idiot who always guessed
“art” would only make 45 mistakes.

You could tell a similar story about any increasing function, not just log,
but log happens to work very well in practice, in part because it’s not very
sensitive to the exact number of documents. So this is not the same log we will
see in information theory, or the log in psychophysics. Notice also that this is
not guaranteed to work. Even if w appears in every document, so IDF (w) = 0,
it might be common in some of them and rare in others, so we’ll ignore what
might have been useful information. (Maybe genetics papers about laboratory
procedures use “DNA” more often, and papers about hereditary diseases use
“gene” more often.)

— This is our first look at the problem of feature selection: how do we
pick out good, useful features from the very large, perhaps infinite, collection
of possible features? We will come back to this in various ways throughout the
course. Right now, concentrate on the fact that in search, and other classifi-
cation problems, we are looking for features that let us discriminate between
the classes.

4 More Wrinkles to Similarity Search

4.1 Stemming

It is a lot easier to decide what counts as “a word” in English than in some
other languages.2 Even so, we need to decide whether “car” and “cars” are the
same word, for our purposes, or not. Stemming takes derived forms of words
(like “cars”, “flying”) and reduces them to their stem (“car”, “fly”). Doing
this well requires linguistic knowledge (so the system doesn’t think the stem of

2For example, Turkish is what is known as an “aggulutinative” language, in which gram-
matical units are “glued together” to form compound words whose meaning would be a whole
phrase or sentence in English, e.g., gelemiyebelirim, “I may be unable to come”, yapabilecekdiy-
seniz, “if you were going to be able to do”, or calistirilmamaliymis, “supposedly he ought not
to be made to work”. (German does this too, but not so much.) This causes problems with
Turkish-language applications, because many sequences-of-letters-separated-by-punctuation
are effectively unique. See, for example, L. Özgür, T. Güngör and F. Gürgen, “Adaptive anti-
spam filtering for agglutinative languages: a special case for Turkish”, Pattern Recognition
Letters 25 (2004): 1819–1831, available from http://www.cmpe.boun.edu.tr/~gungort/.

5

http://www.cmpe.boun.edu.tr/~gungort/

“potatoes” is “potatoe”, or that “gravity” is the same as “grave”), and it can
even be harmful (if the document has “Saturns”, plural, it’s most likely about
the cars).

4.2 Feedback

People are much better at telling whether you’ve found what they’re looking for
than they are at explaining what it is that they’re looking for. (They know it
when they see it.) Queries are users trying to explain what they’re looking for
(to a computer, no less), so they’re often pretty bad. An important idea in data
mining is that people should do things at which they are better than computers
and vice versa: here they should be deciders, not explainers. Rocchio’s algo-
rithm takes feedback from the user, about which documents were relevant, and
then refines the search, giving more weight to what they like, and less to what
they don’t like.

The user gives the system some query, whose bag-of-words vector is Qt. The
system responses with various documents, some of which the user marks as
relevant (R) and others as not-relevant (NR). (See Fig. 1 again.) The system
then modifies the query vector:

Qt+1 = αQt +
β

|R|
∑

doc∈R

doc− γ

|NR|
∑

doc∈NR

doc

where |R| and |NR| are the number of relevant and non-relevant documents,
and α, β and γ are positive constants. α says how much continuity there is
between the old search and the new one; β and γ gauge our preference for recall
(we find more relevant items) versus precision (more of what we find is relevant).
The system then runs another search with Qt+1, and cycle starts over. As this
repeats, Qt gets closer to the bag-of-words vector which best represents what
the user has in mind, assuming they have something definite and consistent in
mind.

N.B.: A word can’t appear in a document a negative number of times, so or-
dinarily bag-of-words vectors have non-negative components. Qt, however, can
easily come to have negative components, indicating the words whose presence
is evidence that the document isn’t relevant. Recalling the example of problems
with used 2001 Saturns, we probably don’t want anything which contains “Ti-
tan” or “Rhea”, since it’s either about mythology or astronomy, and giving our
query negative components for those words suppresses those documents.

Rocchio’s algorithm works with any kind of similarity-based search, not just
text. It’s related to many machine-learning procedures which incrementally ad-
just in the direction of what has worked and away from what has not — the
stochastic approximation algorithm for estimating functions and curves, re-
inforcement learning for making decisions, Bayesian learning for updating
conditional probabilities, and multiplicative weight training for combining
predictors (which we’ll look at later in the course). This is no accident; they
are all special cases of adaptive evolution by means of natural selection.

6

5 Visualization: Multidimensional Scaling

The bag-of-words vectors representing our documents generally live in spaces
with lots of dimensions, certainly more than three, which are hard for ordinary
humans to visualize. However, we can compute the distance between any two
vectors, so we know how far apart they are. Multidimensional scaling (MDS)
is the general name for a family of algorithms which take high-dimensional
vectors and map them down to two- or three-dimensional vectors, trying to
preserve all the relevant distances.

Abstractly, the idea is that we start with vectors v1, v2, . . . vn in a p-dimensional
space, where p is large, and we want to find new vectors x1, x2, . . . xn in R2 or
R3 such that

n∑
i=1

∑
j 6=i

(δ(v1, v2)− d(x1, x2))2

is as small as possible, where δ is distance in the original space and d is Eu-
clidean distance in the new space. Note that the new or image points xi are
representations of the vi, i.e., representations of representations.

There is some trickiness to properly minimizing this objective function —
for instance, if we rotate all the xi through a common angle, their distances are
unchanged, but it’s not really a new solution — and it’s not usually possible to
make it exactly zero (See Sec. 3.7 in the textbook for details.) We will see a lot
of multidimensional scaling plots, because they are nice visualization tools, but
we will also see a lot of other data reduction or dimensionality reduction
methods, because sometimes it’s more important to preserve other properties
than distances.

Notice that while the bag of words representation gives each of our original
coordinates/features some meaning — it says something very definite about the
document being represented — that’s not the case with the coordinates we get
after doing the MDS. If nothing else, the fact that we could rotate all of the
image points arbitrarily makes it very hard to assign any interpretation to where
the images fall on the axes. This is true of many other dimensionality-reduction
methods as well.

7

-0.2 0.0 0.2 0.4 0.6 0.8

-0
.2

0.
0

0.
2

0.
4

Euclidean-length normalization

mds.coords[,1]

m
ds
.c
oo
rd
s[
,2
]

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

IDF weights and Euclidean-length normalization

mds.coords[,1]

m
ds
.c
oo
rd
s[
,2
]

Figure 2: Illustrations of multidimensional scaling for the 102 art/music stories
(art=red, music=blue), with and without IDF weights. This was produced using
the R command cmdscale (plus a little extra code to plot it nicely). Notice that
with IDF weights, the two classes are far more distinct visually, which comes
through in the classification results in Table 1.

8

	Queries
	Evaluating Similarity Search

	Classification
	Inverse Document Frequency
	More Wrinkles to Similarity Search
	Stemming
	Feedback

	Visualization: Multidimensional Scaling

