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• Medical: x-rays, brain imaging, histology (“do 
these look like cancerous cells?”)

• Satellite imagery

• Fingerprints

• Finding illustrations for lectures...
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Searching for Images by 
Searching for Text

• Assume there’s text accompanying the images 
(“annotation”)

• tags

• Search those text records with the query phrase

• Take images which appear close to the query 
phrase on highly-ranked records

• This how Google does it
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Sometimes 
this works 
perfectly...
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...and 
sometimes 
it doesn’t; 

depends on 
the text!
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Searching for images by 
representing images

• For text, we only cared about features, and 
only worked with feature vectors

• Define numerical features for images and 
everything carries over

• Abstraction
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Abstraction

• Remove some of the details but keep others
• Kept details = features

• Then act on abstracta

• Hopes:
• Simplifies problem
• Lets you treat many problems similarly

7



Abstract level: feature vectors
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Concrete level: meaningful objects
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Concrete level: meaningful objects
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Concrete level: meaningful objects
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• Need to find right (relevant) representation

• Representation = concrete/abstract 
interface
• Go read The Sciences of the Artificial!

• Great methods at the abstract level 
generally fail if the representation is bad
• missing what’s relevant
• including what’s irrelevant
• comparing apples to kangaroos

• both multicellular sexually-reproducing carbon-based lifeforms...

• A lot of your work will be designing 
representations
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Concrete level: meaningful objects
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flower1 flower2 flower3

tiger1 tiger2 tiger3

ocean1 ocean2 ocean3
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Euclidean Distance of 
Images

• Image is MxN pixels, each with 3 color 
components, so a 3MN vector

• Euclidean distance possible, and OK for 
some kinds of noise-removal

• but hopeless even at grouping flower1 with 
flower2

• or slight changes in perspective, lighting...
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Bag of Colors

• “If it works, try it some more”

• For each possible color, count how many 
pixels there are of that color

• Use Euclidean distance on color-count 
vectors

• Too many colors, so quantize them down to 
a manageable number (like stemming, or 
combining synonyms)
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Representation and 
Invariance

• Invariances of a representation = how can we 
change the underlying object without changing 
the representation?

• What differences does the representation ignore?
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Invariants of bags of words

• Punctuation and word order

• Universal words (exact count of “the”, “of”, 
“to”, ...), if using inverse document frequency

• Word-endings, if using stemming

• Grammar, context, word proximity ...

• “Send lawyers, guns and money” vs. 
“Sending the Guns’ lawyers for the 
money”
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Invariants of bags of 
colors

• Small changes in orientation, pose, some rotations

• Small amounts of color noise or weird colors

• Texture
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Same color counts, different textures
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Non-invariants

• Lighting, shadows

• Occlusion, 3D effects

• Blurring

• There are good ways to deal with blur 
(from astronomy)

• but full vision is very, very hard
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• Breaking an invariance is easy

• e.g., add features for textures

• or sub-divide the image and do color-
counts on each part

• Adding invariances is hard

• often need to go back to scratch and 
chose a different representation
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Similarity 
search

with real 
images

from the 
web

(“retrievr”, 
see notes)
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• Typically works better with more restricted 
domains (actually pretty good for medical 
images)
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