Principal Components: Mathematics, Example,
Interpretation

36-350: Data Mining
18 September 2009

READING: Section 3.6 in the textbook.
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At the end of the last lecture, I set as our goal to find ways of reducing the
dimensionality of our data by means of linear projections, and of choosing pro-
jections which in some sense respect the structure of the data. I further asserted
that there was one way of doing this which was far more useful and important
than others, called principal components analysis, where “respecting struc-
ture” means “preserving variance”. This lecture will explain that, explain how
to do PCA, show an example, and describe some of the issues that come up in
interpreting the results.

PCA has been rediscovered many times in many fields, so it is also known as
the Karhunen-Loéve transformation, the Hotelling transformation, the method
of empirical orthogonal functions, and singular value decompositiorﬂ We will
call it PCA.

1 Mathematics of Principal Components

We start with p-dimensional feature vectors, and want to summarize them by
projecting down into a g-dimensional subspace. Our summary will be the pro-

IStrictly speaking, singular value decomposition is a matrix algebra trick which is used in
the most common algorithm for PCA.



jection of the original vectors on to ¢ directions, the principal components,
which span the sub-space.

There are several equivalent ways of deriving the principal components math-
ematically. The simplest one is by finding the projections which maximize the
variance. The first principal component is the direction in feature space along
which projections have the largest variance. The second principal component
is the direction which maximizes variance among all directions orthogonal to
the first. The k' component is the variance-maximizing direction orthogonal
to the previous £ — 1 components. There are p principal components in all.

Rather than maximizing variance, it might sound more plausible to look for
the projection with the smallest average (mean-squared) distance between the
original vectors and their projections on to the principal components; this turns
out to be equivalent to maximizing the variance.

Throughout, assume that the data have been “centered”, so that every fea-
ture has mean 0. If we write the centered data in a matrix X, where rows are
objects and columns are features, then X7X = nV, where V is the covariance
matrix of the data. (You should check that last statement!)

1.1 Minimizing Projection Residuals

We'll start by looking for a one-dimensional projection. That is, we have p-
dimensional feature vectors, and we want to project them on to a line through
the origin. We can specify the line by a unit vector along it, @, and then
the projection of a data vector x; on to the line is & - w, which is a scalar.
(Sanity check: this gives us the right answer when we project on to one of
the coordinate axes.) This is the distance of the projection from the origin;
the actual coordinate in p-dimensional space is (#; - @)w. The mean of the
projections will be zero, because the mean of the vectors z; is zero:

iZ(@.@’)@‘:((ini>-1ﬁ>lﬁ (1)
i=1 i=1

If we try to use our projected or image vectors instead of our original vectors,
there will be some error, because (in general) the images do not coincide with
the original vectors. (When do they coincide?) The difference is the error or
residual of the projection. How big is it? For any one vector, say z;, it’s
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(This is the same trick used to compute distance matrices in the solution to the

first homework; it’s really just the Pythagorean theorem.) Add those residuals
up across all the vectors:
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The term in the big parenthesis doesn’t depend on @, so it doesn’t matter for
trying to minimize the residual sum-of-squares. To make RSS small, what we
must do is make the second sum big, i.e., we want to maximize
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which we can see is the sample mean of (& - x—;-)Q. The mean of a square is always
equal to the square of the mean plus the variance:
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Since we’ve just seen that the mean of the projections is zero, minimizing the
residual sum of squares turns out to be equivalent to maximizing the variance
of the projections.

(Of course in general we don’t want to project on to just one vector, but
on to multiple principal components. If those components are orthogonal and
have the unit vectors wy, ws, ... w, then the image of x; is its projection into
the space spanned by these vectors,
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The mean of the projection on to each component is still zero. If we go through
the same algebra for the residual sum of squares, it turns out that the cross-
terms between different components all cancel out, and we are left with trying
to maximize the sum of the variances of the projections on to the components.
EXERCISE: Do this algebra.)

1.2 Maximizing Variance

Accordingly, let’s maximize the variance! Writing out all the summations grows
tedious, so let’s do our algebra in matrix form. If we stack our n data vectors
into an n X p matrix, X, then the projections are given by Xw, which is an
n x 1 matrix. The variance is
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We want to chose a unit vector @ so as to maximize U?E. To do this, we need
to make sure that we only look at unit vectors — we need to constrain the
maximization. The constraint is that - @ = 1, or wl w = 1. This needs a brief
excursion into constrained optimization.

We start with a function f(w) that we want to maximize. (Here, that
function is w”Vw.) We also have an equality constraint, g(w) = c. (Here,
g(w) = wI'w and ¢ = 1.) We re-arrange the constraint equation so its right-
hand side is zero, g(w) — ¢ = 0. We now add an extra variable to the problem,
the Lagrange multiplier \, and consider u(w, ) = f(w) —A(g(w)—¢). This is
our new objective function, so we differentiate with respect to both arguments
and set the derivatives equal to zero:
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That is, maximizing with respect to A gives us back our constraint equation,
g(w) = ¢. At the same time, when we have the constraint satisfied, our new ob-
jective function is the same as the old one. (If we had more than one constraint,
we would just need more Lagrange multipliers.)m

For our projection problem,

u = W Vw - A\wlw—1) (17)
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Thus, desired vector w is an eigenvector of the covariance matrix V, and the
maximizing vector will be the one associated with the largest eigenvalue .
This is good news, because finding eigenvectors is something which can be done
comparatively rapidly (see Principles of Data Mining p. 81), and because eigen-
vectors have many nice mathematical properties, which we can use as follows.
We know that V is a p X p matrix, so it will have p different eigenvectorsﬂ
We know that V is a covariance matrix, so it is symmetric, and then linear

2To learn more about Lagrange multipliers, read Boas| (1983) or (more compactly) [Klein
(2001).

3Thanks to Ramana Vinjamuri for pointing out a sign error in an earlier version of this
paragraph.

4Exception: if n < p, there are only n distinct eigenvectors and eigenvalues.



algebra tells us that the eigenvectors must be orthogonal to one another. Again
because V is a covariance matrix, it is a positive matrix, in the sense that
Z-VZ >0 for any Z. This tells us that the eigenvalues of V must all be > 0.

The eigenvectors of V are the principal components of the data. We
know that they are all orthogonal top each other from the previous paragraph,
so together they span the whole p-dimensional feature space. The first principal
component, i.e. the eigenvector which goes the largest value of ), is the direction
along which the data have the most variance. The second principal component,
i.e. the second eigenvector, is the direction orthogonal to the first component
with the most variance. Because it is orthogonal to the first eigenvector, their
projections will be uncorrelated. In fact, projections on to all the principal
components are uncorrelated with each other. If we use ¢ principal components,
our weight matrix w will be a p X ¢ matrix, where each column will be a different
eigenvector of the covariance matrix V. The eigenvalues will give the total
variance described by each component. The variance of the projections on to
the first ¢ principal components is then > 7 | A;.

1.3 More Geometry; Back to the Residuals

Suppose that the data really are g-dimensional. Then V will have only ¢ positive
eigenvalues, and p — q zero eigenvalues. If the data fall near a g-dimensional
subspace, then p — g of the eigenvalues will be nearly zero.

If we pick the top ¢ components, we can define a projection operator P,.
The images of the data are then XP,. The projection residuals are X - XP,
or X(1—-P,). (Notice that the residuals here are vectors, not just magnitudes.)
If the data really are g-dimensional, then the residuals will be zero. If the data
are approximately g-dimensional, then the residuals will be small. In any case,
we can define the R? of the projection as the fraction of the original variance
kept by the image vectors,

R2 — 2321 )\i (20)
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just as the R? of a linear regression is the fraction of the original variance of the
dependent variable retained by the fitted values.

The ¢ = 1 case is especially instructive. We know, from the discussion
of projections in the last lecture, that the residual vectors are all orthogonal
to the projections. Suppose we ask for the first principal component of the
residuals. This will be the direction of largest variance which is perpendicular
to the first principal component. In other words, it will be the second principal
component of the data. This suggests a recursive algorithm for finding all the
principal components: the k' principal component is the leading component of
the residuals after subtracting off the first £ — 1 components. In practice, it is
faster to use eigenvector-solvers to get all the components at once from V, but
we will see versions of this idea later.

This is a good place to remark that if the data really fall in a g-dimensional
subspace, then V will have only ¢ positive eigenvalues, because after subtracting



Variable Meaning

Sports Binary indicator for being a sports car
SUV Indicator for sports utility vehicle
Wagon Indicator

Minivan Indicator

Pickup Indicator

AWD Indicator for all-wheel drive
RWD Indicator for rear-wheel drive
Retail Suggested retail price (US$)
Dealer Price to dealer (US$)

Engine Engine size (liters)

Cylinders Number of engine cylinders
Horsepower Engine horsepower

CityMPG City gas mileage

HighwayMPG Highway gas mileage

Weight Weight (pounds)

Wheelbase Wheelbase (inches)

Length Length (inches)

Width Width (inches)

Table 1: Features for the 2004 cars data.

off those components there will be no residuals. The other p — ¢ eigenvectors
will all have eigenvalue 0. If the data cluster around a g-dimensional subspace,
then p — g of the eigenvalues will be very small, though how small they need to
be before we can neglect them is a tricky question

2 Example: Cars

Today’s dataset is 388 cars from the 2004 model year, with 18 features (from
http://www.amstat.org/publications/jse/datasets/O4cars.txt, with in-
complete records removed). Eight features are binary indicators; the other 11
features are numerical (Table [I). All of the features except Type are numeri-
cal. Table [2] shows the first few lines from the data set. PCA only works with
numerical features, so we have ten of them to play with.

There are two R functions for doing PCA, princomp and prcomp, which differ
in how they do the actual calculationEI The latter is generally more robust, so

50ne tricky case where this can occur is if n < p. Any two points define a line, and three
points define a plane, etc., so if there are fewer data points than features, it is necessarily
true that the fall on a low-dimensional subspace. If we look at the bags-of-words for the
Times stories, for instance, we have p &~ 4400 but n =~ 102. Finding that only 102 principal
components account for all the variance is not an empirical discovery but a mathematical
artifact.

Sprincomp actually calculates the covariance matrix and takes its eigenvalues. prcomp uses
a different technique called “singular value decomposition”.


http://www.amstat.org/publications/jse/datasets/04cars.txt

Sports, SUV, Wagon, Minivan, Pickup, AWD, RWD, Retail,Dealer,Engine,Cylinders,Horsepower,Cif
Acura 3.5 RL,0,0,0,0,0,0,0,43755,39014,3.5,6,225,18,24,3880,115,197,72

Acura MDX,0,1,0,0,0,1,0,36945,33337,3.5,6,265,17,23,4451,106,189,77

Acura NSX S,1,0,0,0,0,0,1,89765,79978,3.2,6,290,17,24,3153,100,174,71

Table 2: The first few lines of the 2004 cars data set.

we’ll just use it.

cars04 = read.csv("cars-fixed04.dat")
cars04.pca = prcomp(cars04[,8:18], scale.=TRUE)

The second argument to prcomp tells it to first scale all the variables to have
variance 1, i.e., to standardize them. You should experiment with what happens
with this data when we don’t standardize.

We can now extract the loadings or weight matrix from the cars04.pca
object. For comprehensibility I'll just show the first two components.

> round(cars04.pca$rotation[,1:2],2)

PC1  PC2
Retail -0.26 -0.47
Dealer -0.26 -0.47
Engine -0.35 0.02

Cylinders -0.33 -0.08
Horsepower -0.32 -0.29

CityMPG 0.31 0.00
HighwayMPG 0.31 0.01
Weight -0.34 0.17
Wheelbase -0.27 0.42
Length -0.26 0.41
Width -0.30 0.31

This says that all the variables except the gas-mileages have a negative projection
on to the first component. This means that there is a negative correlation
between mileage and everything else. The first principal component tells us
about whether we are getting a big, expensive gas-guzzling car with a powerful
engine, or whether we are getting a small, cheap, fuel-efficient car with a wimpy
engine.

The second component is a little more interesting. Engine size and gas
mileage hardly project on to it at all. Instead we have a contrast between the
physical size of the car (positive projection) and the price and horsepower. Basi-
cally, this axis separates mini-vans, trucks and SUVs (big, not so expensive, not
so much horse-power) from sports-cars (small, expensive, lots of horse-power).

To check this interpretation, we can use a useful tool called a biplot, which
plots the data, along with the projections of the original features, on to the first
two components (Figure [1)). Notice that the car with the lowest value of the



second component is a Porsche 911, with pick-up trucks and mini-vans at the
other end of the scale. Similarly, the highest values of the first component all
belong to hybrids.

2.1 A Recipe

There is a more-or-less standard recipe for interpreting PCA plots, which goes
as follows.

To begin with, find the first two principal components of your data. (I say
“two” only because that’s what you can plot; see below.) It’s generally a good
idea to standardized all the features first, but not strictly necessary.

Coordinates Using the arrows, summarize what each component means. For
the cars, the first component is something like size vs. fuel economy, and
the second is something like sporty vs. boxy.

Correlations For many datasets, the arrows cluster into groups of highly cor-
related attributes. Describe these attributes. Also determine the overall
level of correlation (given by the R? value). Here we get groups of arrows
like the two MPGs (unsurprising), retail and dealer price (ditto) and the
physical dimensions of the car (maybe a bit more interesting).

Clusters Clusters indicate a preference for particular combinations of attribute
values. Summarize each cluster by its prototypical member. For the cars
data, we see a cluster of very similar values for sports-cars, for instance,
slightly below the main blob of data.

Funnels Funnels are wide at one end and narrow at the other. They happen
when one dimension affects the variance of another, orthogonal dimension.
Thus, even though the components are uncorrelated (because they are
perpendicular) they still affect each other. (They are uncorrelated but
not independent.) The cars data has a funnel, showing that small cars are
similar in sportiness, while large cars are more varied.

Voids Voids are areas inside the range of the data which are unusually unpop-
ulated. A permutation plot is a good way to spot voids. (Randomly
permute the data in each column, and see if any new areas become occu-
pied.) For the cars data, there is a void of sporty cars which are very small
or very large. This suggests that such cars are undesirable or difficult to
make.

Projections on to the first two or three principal components can be visu-
alized; however they may not be enough to really give a good summary of the
data. Usually, to get an R? of 1, you need to use all p principal componentsE]

"The exceptions are when some of your features are linear combinations of the others, so
that you don’t really have p different features, or when n < p.
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biplot(cars04.pca,cex=0.4)

Figure 1: “Biplot” of the 2004 cars data. The horizontal axis shows projections
on to the first principal component, the vertical axis the second component.
Car names are written at their projections on to the components (using the
coordinate scales on the top and the right). Red arrows show the projections
of the original features on to the principal components (using the coordinate
scales on the bottom and on the left).



How many principal components you should use depends on your data, and how
big an R? you need. In some fields, you can get better than 80% of the variance
described with just two or three components. A sometimes-useful device is to
plot 1 — R? versus the number of components, and keep extending the curve it
until it flattens out.

3 PCA Cautions

Trying to guess at what the components might mean is a good idea, but like
many god ideas it’s easy to go overboard. Specifically, once you attach an idea
in your mind to a component, and especially once you attach a name to it, it’s
very easy to forget that those are names and ideas you made up; to reify them,
as you might reify clusters. Sometimes the components actually do measure
real variables, but sometimes they just reflect patterns of covariance which have
many different causes. If I did a PCA of the same features but for, say, 2007
cars, I might well get a similar first component, but the second component would
probably be rather different, since SUVs are now common but don’t really fit
along the sports car/mini-van axis.

A more important example comes from population genetics. Starting in the
late 1960s, L. L. Cavalli-Sforza and collaborators began a huge project of map-
ping human genetic variation — of determining the frequencies of different genes
in different populations throughout the world. (Cavalli-Sforza et al.| (1994) is
the main summary; Cavalli-Sforza has also written several excellent popular-
izations.) For each point in space, there are a very large number of features,
which are the frequencies of the various genes among the people living there.
Plotted over space, this gives a map of that gene’s frequency. What they noticed
(unsurprisingly) is that many genes had similar, but not identical, maps. This
led them to use PCA, reducing the huge number of features (genes) to a few
components. Results look like Figure They interpreted these components,
very reasonably, as signs of large population movements. The first principal
component for Europe and the Near East, for example, was supposed to show
the expansion of agriculture out of the Fertile Crescent. The third, centered
in steppes just north of the Caucasus, was supposed to reflect the expansion
of Indo-European speakers towards the end of the Bronze Age. Similar stories
were told of other components elsewhere.

Unfortunately, as Novembre and Stephens| (2008|) showed, spatial patterns
like this are what one should expect to get when doing PCA of any kind of spatial
data with local correlations, because that essentially amounts to taking a Fourier
transform, and picking out the low-frequency componentsﬂ They simulated
genetic diffusion processes, without any migration or population expansion, and

8Remember that PCA re-writes the original vectors as a weighted sum of new, orthogonal
vectors, just as Fourier transforms do. When there is a lot of spatial correlation, values at
nearby points are similar, so the low-frequency modes will have a lot of amplitude, i.e., carry a
lot of the variance. So first principal components will tend to be similar to the low-frequency
Fourier modes.
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got results that looked very like the real maps (Figure [3). This doesn’t mean
that the stories of the maps must be wrong, but it does undercut the principal
components as evidence for those stories.

References

Boas, Mary L. (1983). Mathematical Methods in the Physical Sciences. New
York: Wiley, 2nd edn.

Cavalli-Sforza, L. L., P. Menozzi and A. Piazza (1994). The History and Geog-
raphy of Human Genes. Princeton: Princeton University Press.

Klein, Dan (2001). “Lagrange Multipliers without Permanent Scar-
ring.” Online tutorial. URL http://dbpubs.stanford.edu:8091/~klein/
lagrange-multipliers.pdfl

Novembre, John and Matthew Stephens (2008). “Interpreting principal compo-
nent analyses of spatial population genetic variation.” Nature Genetics, 40:
646-649. doi:10.1038 /ng.139.

11


http://dbpubs.stanford.edu:8091/~klein/lagrange-multipliers.pdf
http://dbpubs.stanford.edu:8091/~klein/lagrange-multipliers.pdf
http://dx.doi.org/10.1038/ng.139

Asia Europe Africa

Figure 2: Principal components of genetic variation in the old world, according
to (Cavalli-Sforza et al.| (1994]), as re-drawn by [Novembre and Stephens| (2008).
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Theory

Asia Europe Africa
Discrete Cosine  Stepping-stone
Transform simulation
‘Gradient’ PC1

‘Perpendicular

gradient’ PC2
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Figure 3: How the PCA patterns can arise as numerical artifacts (far left col-

umn) or through simple genetic diffusion (next column). From
Stephens| (2008).
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