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There are two problems which are both known as “causal inference”:

1. Given the causal structure of a system, estimate the effects the variables
have on each other.

2. Given data about a system, find its causal structure.

The first problem is easier, so we’ll begin with it.

1 Estimating Causal Effects with Known Struc-
ture

Suppose we want to estimate the causal effect of X on Y, Pr(Y|do(X = z)).
If we can actually manipulate the system, then the statistical problem is triv-
ial: set X to x, measure Y, and repeat often enough to get an estimate of the
distribution. (As my mother says, “Why think when you can just do the exper-
iment?”) So suppose we can’t do the experiment. We can however get the joint
distribution Pr (X,Y, Z) for some collection of covariates Z, and we know the
causal graph. Is this enough to determine Pr (Y|do(X = z))? That is, does the
joint distribution identify the causal effect?



Figure 1: “Controlling for” additional variables can introduce bias into esti-
mates of causal effects. Here the effect of X on Y is directly identifiable,
Pr (Y|do(X = z)) =Pr(Y|X = z). If we also condition on Z however, because
it is a common effectof X and Y, we'd get Pr (Y| X =2,Z = 2) # Pr (Y| X = x).
In fact, even if there were no arrow from X to Y, conditioning on Z would make
Y depend on X.

The answer is “yes” when the covariates Z contain all the other relevant
variables. The inferential problem is then trivial again, or at least no worse than
any other statistical estimation problem. In fact, if we know the causal graph
and get to observe all the variables, then we could (in principle) just use our
favorite non-parametric conditional density estimate at each node in the graph,
with its parent variables as the inputs and its own variable as the response.
Multiplying conditional distributions together gives the whole distribution of
the graph, and we can get any causal effects we want by surgery. If we’re
willing to assume a bit more, we can get away with just using non-parametric
regression or even just an additive model at each node. Assuming yet more, we
could use parametric models at each node; the linear-Gaussian assumption is
(alas) very popular.

If some variables are not observed, then the issue of which causal effects are
observationally identifiable is considerably trickier. Apparently subtle changes
in which variables are available to us and used can have profound consequences.

The basic principle underlying all considerations is that we would like to
condition on adequate control variables, which will block paths linking X and
Y other than those which would exist in the surgically-altered graph where all
paths into X have been removed. If other unblocked paths exist, then there is
some confounding of the causal effect of X on Y with their mutual association
with third parties. Just conditioning on everything possible does not give us
adequate control, or even necessarily bring us closer to it (Figure [I|and Exercise
1).

There are two main sufficient criteria we can use to get adequate control;



they are called the back-door criterion and the front-door criterion.

If we want to know the effect of X on Y and have a set of variables S as the
control, then S satisfies the back-door criterion if (i) S blocks every path from
X to Y that has an arrow into X (“blocks the back door”), and (ii) no node in
S is a descendant of X. Then

Pr(Y|do(X =2)) =Y Pr(Y|X=2,8=s)Pr(S=s) (1)

Notice that all the items on the right-hand side are observational conditional
probabilities, not counterfactuals.

On the other hand, S satisfies the front-door criterion when (i) S blocks all
directed paths from X to Y, (ii) there are no unblocked back-door paths from
X to S, and (iii) X blocks all back-door paths from S to Y. Then

Pr(Y|do(X =2)) =Y Pr(S=s/X=2)> Pr(Y|X =2/,5=5)Pr(X =2

(2)
A natural reaction to the front-door criterion is “Say what?”, but it becomes
more comprehensible if we take apart its. Because, by clause (i), S blocks all
directed paths from X to Y, any causal dependence of Y on X must be mediated
by a dependence of Y on S:

Pr(Y|do(X =x)) = ZPr (Y|do(S = s))Pr (S = s|do(X = x))

Clause (ii) says that we can estimate the effect of X on S directly,
Pr(S=sldo(X =x))=Pr(S=s|X=xz) .

Clause (iii) say that X satisfies the back-door criterion for estimating the effect
of S on Y, and the inner sum in Eq. [2|is just the back-door estimate (Eq.[1]) of
Pr (Y|do(S = s)). So really we are using the back door criterion. (See Figure
B

Both the back-door and front-door criteria are sufficient for estimating causal
effects from probabilistic distributions, but are not necessary. Necessary and
sufficient conditions for the identifiablity of causal effects are in principle pos-
sible but don’t have a nice snappy form (Pearl, [2009, §§3.4-3.5). A necessary
condition for un-identifiability, however, is the presence of an unblockable back-
door path from X to Y. However, this is not sufficient for lack of identification
— we might, for instance, be able to use the front door criterion, as in Figure

When identification — that is, adequate control of confounding — is not
possible, it may still be possible to bound causal effects. That is, even if we
can’t say exactly that Pr (Y |do(X = x)) must be, we can still say it has to fall
within a certain (non-trivial!) range of possibilities. The development of bounds
for non-identifiable quantities, what’s sometimes called partial identification,
is an active area of research, which I think is very likely to work its way back
into data-mining; the best introduction is probably Manskil (2007)).
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Figure 2: Illustration of the front-door criterion, after |Pearl (2009, Figure 3.5).
X, Y and Z are all observed, but U is an unobserved common cause of both X
and Y. X «— U — Y is a back-door path confounding the effect of X on Y with
their common cause. However, all of the effect of X on Y is mediated through
X’s effect on Z. Z’s effect on Y is, in turn, confounded by the back-door path
Z «— X «— U — Y, but X blocks this path. So we can use back-door adjustment
to find Pr (Y|do(Z = z)), and directly find Pr(Z|do(X = z)) = Pr(Z|X = z),
and putting these together gives Pr (Y|do(X = x)).

2 Discovering Causal Structure

2.1 Causal Discovery with Known Variables

Causal discovery is silly with just one variable, and too hard with just two for
us[l]

So let’s start with three variables, X, Y and Z. By testing for independence
and conditional independence, we could learn that there had to be edges be-
tween X and Y and Y and Z, but not between X and Z E| But conditional
independence is a symmetric relationship, so how could we orient those edges,
give them direction? Well, there are only four possible directed graphs corre-
sponding to that undirected graph:

e X - Y — Z (a chain);
e X «— Y « Z (the other chain);

1But see [Janzing| (2007); [Hoyer et al.| (2009)) for some ideas on how you could do it if
you're willing to make some extra assumptions. The basic idea of these papers is that the
distribution of effects given causes should be simpler, in some sense, than the distribution of
causes given effects.

2Remember that an edge between X and Y means that either X is a parent of Y, X — Y,
or Y is a parent of X, X <« Y. Either way, the two variables will be dependent no matter
what collection of other variables we might condition on. If X1LY'|S for some set of variables
S, then, and only then, is there no edge between X and Y.



e X —Y — Z (afork on Y);
e X - Y « Z (acollision at Y)

With the fork or either chain, we have XILZ|Y. On the other hand, with
the collider we have X A Z|Y. (This is where the assumption of faithfulness
comes in.) Thus X JZ|Y if and only if there is a collision at Y. By testing for
this conditional independence, we can either definitely orient the edges, or rule
out an orientations. If X —Y — Z is just a subgraph of a larger graph, we can
still identify it as a collider if X JLZ|{Y, S} for all collections of nodes S (not
including X and Z themselves, of course).

With more nodes and edges, we can induce more orientations of edges
by consistency with orientations we get by identifying colliders. For example,
suppose we know that X, Y, Z is either a chain or a fork on Y. If we learn that
X — Y, then the triple cannot be a fork, and must be the chain X — Y — Z.
So orienting the X — Y edge induces an orientation of the Y — Z edge. We can
also sometimes orient edges through background knowledge; for instance we
might know that Y comes later in time than X, so if there is an edge between
them it cannot run from Y to XP| We can eliminate other edges based on
similar sorts of background knowledge: men tend to be heavier than women,
but changing weight does not change sex, so there can’t be an edge (or even a
directed path!) from weight to sex.

Orienting edges is the core of the basic causal discovery procedure, the SGS
algorithm (Spirtes et al., 2001} §5.4.1, p. 82). This assumes:

1. The data-generating distribution has the causal Markov property on a
graph G.

2. The data-generating distribution is faithful to G.

3. Every member of the population has the same distribution.

4. All relevant variables are in G.

5. There is only one graph G to which the distribution is faithful.
Abstractly, the algorithm works as follows:

e Start with a complete undirected graph on all variables.

3Some have argued, or at least entertained the idea, that the logic here is backwards: rather
than order in time constraining causal relations, causal order defines time order. (Versions
of this idea are discussed by, inter alia, Russelll (1927); |Wiener]| (1961); Reichenbach| (1956));
Pearl| (2009); [Janzing| (2007) makes a related suggestion). Arguably then using order in time
to orient edges in a causal graph begs the question, or commits the fallacy of petitio principii.
But of course every syllogism does, so this isn’t a distinctively statistical issue. (Take the
classic: “All men are mortal; Socrates is a man; therefore Socrates is mortal.” How can
we know that all men are mortal until we know about the mortality of this particular man,
Socrates? Isn’t this just like asserting that tomatoes and peppers must be poisonous, because
they belong to the nightshade family of plants, all of which are poisonous?) While these
philosophical issues are genuinely fascinating, this footnote has gone on long enough, and it
is time to return to the main text.



e For each pair of variables, see if conditioning on some set of variables
makes them conditionally independent; if so, remove their edge.

e Identify all colliders by checking for conditional dependence; orient the
edges of colliders.

e Try to orient undirected edges by consistency with already-oriented edges;
do this recursively until no more edges can be oriented.

Pseudo-code is in the appendix. R

Call the result of the SGS algorithm G. If all of the assumptions above hold,
and the algorithm is correct in its guesses about when variables are conditionally
independent, then G = G. In practice, of course, conditional independence
guesses are really statistical tests based on finite data, so we should write the
output as G, to indicate that it is based on only n samples. If the conditional
independence test is consistent, then

lim Pr (@n #* G) =0

n—oo
In other words, the SGS algorithm converges in probability on the correct causal
structure; it is consistent for all graphs G. Of course, at finite n, the probability
of error — of having the wrong structure — is (generally!) not zero, but this
just means that, like any statistical procedure, we cannot be absolutely certain
that it’s not making a mistake.

One consequence of the independence tests making errors on finite data can
be that we fail to orient some edges — perhaps we missed some colliders. These
unoriented edges in G,, can be thought of as something like a confidence region
— they have some orientation, but multiple orientations are all compatible with
the dataE| As more and more edges get oriented, the confidence region shrinks.

If the fifth assumption above fails to hold, then there are multiple graphs
G to which the distribution is faithful. This is just a more complicated version
of the difficulty of distinguishing between the graphs X — Y and X <« Y. All
the graphs in this equivalence class may have some arrows in common; in
that case the SGS algorithm will identify those arrows. If some edges differ in
orientation across the equivalence class, SGS will not orient them, even in the
limit. In terms of the previous paragraph, the confidence region never shrinks
to a single point, just because the data doesn’t provide the information needed
to do this.

If there are unmeasured relevant variables, we can get not just unoriented
edges, but actually arrows pointing in both directions. This is an excellent sign
that some basic assumption is being violated.

The SGS algorithm is statistically consistent, but very computationally in-
efficient; the number of tests it does grows exponentially in the number of vari-
ables p. This is the worst-case complexity for any consistent causal-discovery
procedure, but this algorithm just proceeds immediately to the worst case, not

41 say “multiple orientations” rather than “all orientations”, because picking a direction
for one edge might induce an orientation for others.



taking advantage of any possible short-cuts. A refinement, called the PC algo-
rithm, tries to minimize the number of conditional independence tests performed
(Spirtes et all [2001, §5.4.2, pp. 84-88). There is actually an implementation
of the PC algorithm in R (PCalg on CRAN), but it assumes linear-Gaussian
models (Kalisch and Biithlmnann| 2007)).

2.2 Causal Discovery with Hidden Variables

Suppose that the set of variables we measure is not causally sufficient. Could
we at least discover this? Could we possibly get hold of some of the causal rela-
tionships? Algorithms which can do this exist (e.g., the CI and FCI algorithms
of |Spirtes et al| (2001, ch. 6)), but they require considerably more graph-fu.
The results of these algorithms can succeed in removing some edges between
observable variables, and definitely orienting some of the remaining edges. If
there are actually no latent common causes, they end up acting like the SGS or
PC algorithms.

There is not, so far as I know, any implementation of the CI or FCI al-
gorithms in R. The FCI and PC algorithms, along with some other, related
procedures, are implemented in the stand-alone Java program Tetrad (http:
//www.phil.cmu.edu/projects/tetrad/)). It would be a Good Thing if some-
one were to re-implement these algorithms in R.

2.3 Note on Conditional Independence Tests

The abstract algorithms for causal discovery assume the existence of consistent
tests for conditional independence. The implementations known to me assume
either that variables are discrete (so that one can basically use the x? test), or
that they are continuous, Gaussian, and linearly related (so that one can test
for vanishing partial correlations). It bears emphasizing that these restrictions
are not essential. As soon as you have a consistent independence test, you
are, in principle, in business. In particular, consistent non-parametric tests of
conditional independence would work perfectly well. An interesting example of
this is the paper by |(Chu and Glymour| (2008, on finding causal models for the
time series, assuming additive but non-linear models.

2.4 Limitations on Consistency of Causal Discovery
There are some important limitations to causal discovery algorithms (Spirtes

et al., 2001} §12.4). They are universally consistent: for all causal graphs GEI

lim Pr (én ”] G) —0 (3)

n—oo

The probability of getting the graph wrong can be made arbitrarily small by
using enough data. However, this says nothing about how much data we need

5If the true distribution is faithful to multiple graphs, then we should read G as their
common graph pattern, which has some undirected edges.
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to achieve a given level of confidence, i.e., the rate of convergence. Uniform
consistency would mean that we could put a bound on the probability of error
as a function of n which did not depend on the true graph G. [Robins et al.
(2003)) proved that no uniformly-consistent causal discovery algorithm can exist.
The issue, basically, is that the Adversary could make the convergence in Eq.
arbitrarily slow by selecting a distribution which, while faithful to G, came very
close to being unfaithful, making some of the dependencies implied by the graph
arbitrarily small. For any given dependence strength, there’s some amount of
data which will let us recognize it with high confidence, but the Adversary can
make the required data size as large as he likes by weakening the dependence,
without ever setting it to zeroEI

The upshot is that so uniform, universal consistency is out of the question;
we can be universally consistent, but without a uniform rate of convergence;
or we can converge uniformly, but only on some less-than-universal class of
distributions. These might be ones where all the dependencies which do exist
are not too weak (and so not too hard to learn reliably from data), or the number
of true edges is not too large (so that if we haven’t seen edges yet they probably
don’t exist; |[Janzing and Herrmann, 2003} |[Kalisch and Biithlmnann| [2007)).

It’s worth emphasizing that the [Robins et al.| (2003) no-uniform-consistency
result applies to any method of discovering causal structure from data. Invoking
human judgment, Bayesian priors over causal structures, etc., etc., won’t get
you out of it.

SRoughly speaking, if X and Y are dependent given Z, the probability of missing this
conditional dependence with a sample of size n should go to zero like 0(2_"1[X?Y‘Z] ), I being
mutual information. To make this probability equal to, say, « we thus need n = O(—log o/I)
samples. The Adversary can thus make n extremely large by making I very small, yet positive.



3 Exercises

Not to hand in.

1. Take the model in Figure [l| Suppose that X ~ N (0,0%), Y = aX +¢
and Z = (1 X + 32Y +1n, where € and 7 are mean-zero Gaussian noise. Set
this up in R and run regress Y twice, once on X alone and once on X and
Z. Can you find any values of the parameters where the coefficient of X
in the second regression is even approximately equal to a? (It’s possible
to solve this problem exactly through linear algebra instead.)

2. Take the model in Figure [2| and parameterize it as follows: U ~ N(0, 1),
X =a1U+e, Z =X+n,Y =vZ+aU+E, where €, 7, £ are independent
Gaussian noises. If you regress Y on Z, what coefficient do you get? If
you regress Y on Z and X? If you do a back-door adjustment for X7
(Approach this either analytically or through simulation, as you like.)

3. Continuing in the set-up of the previous problem, what coefficient do you
get for X when you regress Y on Z and X? Now compare this to the
front-door adjustment for the effect of X on Y.



A Pseudocode for the SGS Algorithm

When you see a loop, assume that it gets entered at least once. “Replace” in
the sub-functions always refers to the input graph.

SGS = function(set of variables V) {
G = colliders(prune( complete undirected graph on V))
until (é ==G"){
G=¢
G’ = orient(G)
}

return(G)

}

prune = function(G) {
for each A,B €V {
for each SC V\{A4,B}{
if ALB|S{G=G\(A-B)}
}
}

return(G)

}

collliders = function(G) {
for each (A— B) € G {
for each (B—-C) € G {
if (A-C)¢G{
collision = TRUE
foreach SC BNV \{4,C}{
if ALLC|S { collision = FALSE }
}

if (collision) { replace (A — B) with (A — B), (B —C) with (B «— C) }
}
}
}
return(G)

}

orient = function(G) {
if((A—-B)eG&(B-C)eG & (A-C) ¢Q@G) {replace (B— C) with (B— C) }
if ((directed path from A to B)e G & (A — B) € G) { replace (A — B) with (A — B) }
return(G)

10
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