
36-220 Lab #7
Point Estimation and Bootstrapping

Please write your name below, tear off this front page and give it to a teaching
assistant as you leave the lab. It will be a record of your participation in the
lab. Please remember to include whether you are in Section A or B. Keep the
rest of your lab write-up as a reference for doing homework and studying for
exams.

Name:

Section:

• The symbol ♣ at the beginning of a question means that, after you answer that

question, you should raise your hand and have either the TA or lab assistant

review your answer. Once they have reviewed your work they will place a check

in the appropriate space in the table below. The purpose of this check is to be

sure you have answered the question correctly.

• You should try to complete as much of the lab exercise as possible.

We understand that students work at different paces and have tried

to structure the exercise so that it can be completed in the allotted

time. If you work systematically through the handout and still don’t

complete every question don’t worry. The important thing is that you

understand what you are doing. Nonetheless, you are encouraged to

complete the lab on your own.

Check-Problem ♣ Instructor’s Initials

Question 3

Question 7
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36-220 Lab #7
Point Estimation and Bootstrapping

1 Bias of Point Estimators

A point estimator is biased if, on average, it over- or under- estimates the true
parameter. We will illustrate this by trying to estimate the population variance.

1. Create a new Minitab worksheet by accessing File → New from the
pull-down menus and selecting “Minitab Worksheet.”

2. Create 10 columns of 500 random Normal(0,1) observations. To do this,
select Calc → Random Data → Normal from the pull-down menus.
Enter “500” in the “Generate . . . rows of data” field. Enter “C1-C10” in
the “Store in column(s)” field. Click OK.

3. Put the mean of each row in column 11. To do this, select Calc → Row
Statistics from the pull-down menu. Under “Statistic” select “Mean”.
Under “Input Variables” type “C1-C10”. Under “Store results in” type
“C11”. Click OK.

4. Recall that the sample variance is

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2. (1)

We’d like to calculate the sample variance for each row. In order to do this
in Minitab, we must first calculate the sample standard deviation. This
is done by selecting Calc → Row Statistics from the pull-down menu.
Under “Statistic” select “Standard Deviation”. Under “Input Variables”
type “C1-C10”. Under “Store results in” type “C12”. OK.

5. The sample standard deviation is the square root of the sample variance.
In order to get the sample variance, we must square the sample standard
deviation. To do this, select Calc → Calculator. Under “Store result
in variable”, type “C13”. Under “Expression”, type “C12 * C12”. Click
OK. We now have the sample variances of our 500 sets of 10 Normal(0,1)
observations stored in C13.

6. The sample variance, given in Equation 1 is an estimate of the true, popu-
lation variance. Note that the fraction in front of the summation of sample
variance is 1

n−1 . An alternative estimate of the sample variance,s2
0, is given

in Equation 2:

s2
0 =

1
n

n∑
i=1

(xi − x̄)2 (2)
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You’ll notice by looking at Equations 1 and 2 that s2
0 = n−1

n s2. Let’s cal-
culate s2

0 in Minitab by doing the following: Select Calc → Calculator
from the pull-down menus. Under “Store result in variable”, type “C14”.
Under “Expression”, type “.9*C13” (Note: Since our n is 10, n−1

n =
9
10 = .9, which accounts for the .9 in this formula). Click OK.

Question #1: Take the first 100 sample means from column 11 and copy
them into a blank column. Now consider two averages, first that of the
100 sample means and then that of the 500 sample means (you can do this
by looking at the mean given by executing Stat → Basic Statistics →
Display Descriptive Statistics and selecting the appropriate column
as your variable). What values did you expect to get? Do the results
surprise you?

Question #2: What is the average of your 500 estimates of the sample
variance, s2? What is the average of your 500 estimates of s2

0?

♣Question #3: Which estimator, s2 or s2
0, is closer to the population

variance? Does s2
0 over-estimate or under-estimate the population vari-

ance? If so, why?

Question #4: Consider the sample variance of each estimator,s2 or s2
0,

from the results generated during question #8. Which of the two estima-
tors has a smaller sample variance?
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2 Bootstrapping

Bootstrapping is a general method for approximating the error properties of
estimators by means of computer simulation. If we knew the sampling distribu-
tion of an estimator, θ̂, we could then work out its bias, E

[
θ̂
]
− θ, its variance

Var
(
θ̂
)
, etc. In general, the sampling distribution is very complicated, and

doesn’t have a closed, analytical form. Bootstrapping gets around this by simu-
lating many random samples, and applying the estimator to each one. This then
gives us an approximation of the sampling distribution of the estimator, from
which we can calculate properties like bias and standard error. If we want to
approximate the standard error, for instance, in a parameter estimate θ̂, which
we got from a sample of size n, we’d proceed as follows.

1. Generate n random numbers, following the probability distribution with
parameter θ̂; call these z∗1,1, z

∗
1,2, . . . z

∗
1,n. Use these to calculate a new

bootstrap estimate, θ̂∗1

2. Generate another n random numbers, z∗2,1, z
∗
2,2, . . . z

∗
2,n, and calculate an-

other bootstrap estimate, θ̂∗2

3. Repeat B times to get bootstrap estimates θ̂∗1 , θ̂∗2 , . . . θ̂∗B

4. The bootstrap standard error is

sθ̂ =

√√√√ 1
B − 1

B∑
i=1

(
θ̂∗i − θ∗

)2

(3)

By the law of large numbers, if B is large, then the distribution of the bootstrap
estimates θ̂∗ will be very close to the true sampling distribution, so the bootstrap
standard error (or any other reasonable function of the distribution) will be close
to its true, population value.
(This is called parametric bootstrapping because we re-use the parameter value
we estimated from our original data. There is a variant, non-parametric boot-
strapping, where we treat our original sample as a complete population, and
draw new samples from it. There are advantages and dis-advantages to both pro-
cedures. Parametric bootstrapping is, however, much easier to do in Minitab!)

1. Open a new worksheet in Minitab.

2. Label the first column “X”. Fill it with 10 simulated random variables
which have the exponential(λ = 1) distribution. Use Calc → Random
Data → Exponential.

3. Compute the mean of the values in the first column. If X has the exponential(λ)
distribution, then E [X] = 1/λ and λ = 1/E [X]. Hence a reasonable esti-
mate of λ is 1/X.
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Question #5: What is your estimate λ̂ for λ? What is the squared error
of your estimate?

4. Label the next ten columns “Z1”, “Z2” and so on through “Z10”.

5. Fill each of these ten columns with 1000 simulated random variables which
have the exponential(λ̂) distribution, where λ̂, again, is your estimate for
λ. N.B., you must set the “scale” parameter here, and in Minitab, that
is 1/λ.

6. Label the 12th column “Zbar”, and fill it with the sample mean for
each row. In other words, the preceeding ten columns are the values
of Z1, Z2, . . . Z10; now put Z in the 12th column. Use Calc → Row
Statistics.

7. Label the next column “Lstar”. This is where you will calculate the
bootstrap estimate for each simulated sample. Since λ̂ = 1/X, we want
λ∗ = 1/Z. Use Calc → Calculator.

8. Calculate the mean and sample standard deviation of the values in the
“Lstar” column.

Question #6: Why do we have ten columns “Z1” . . . “Z10”?

♣ Question #7: What is the sample standard deviation of “Lstar”?
What is your bootstrap estimate of the standard error?
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Question #8: What is the mean of “Lstar”? Does this lead you to
believe that 1/X is an unbiased estimate of λ or not? (Explain!)
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