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Very beginning of the course: samples, and summary statistics of samples,
like sample mean, sample variance, etc.

If the population has a certain distribution, and we take a sample/collect
data, we are drawing multiple random variables. Summaries are functions of
samples. In general, we call a function of the sample a statistic.

We try to generate samples so that each measurement is independent, be-
cause this maximizes the information we get about the population.

Sampling distribution = distribution of the summary statistic, when the
observations are drawn independently from a fixed distribution. All of the
machinery of probability, random variables, etc., we have developed so far is to
let us model this mathematically.

For instance, X1, X2, . . . Xn is a sample of size n.
Now let’s consider Xn = 1

n

∑
Xi. Xn is the random variable which repre-

sents the sample mean.
We want to know what happens to the sampling distributions with large

samples.
There are two major results here: the law of large numbers, and the central

limit theorem. Together, these are the Law and the Prophets of probability and
statistics.

The Law of Large Numbers

The law of large numbers says that large random samples are almost always
representative of the population.

Specifically,
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Let’s prove this. Assume µ and σ are both finite.
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Now let’s use Chebyshev: For any ε > 0,

Pr
(
|Xn −E

[
Xn

]
| > ε

)
≤

Var
(
Xn

)
ε2

Pr
(
|Xn − µ| > ε

)
≤ σ2

nε2

Pr
(
|Xn − µ| > ε

)
→ 0

So we can make sure that the sample average Xn is probably a good approxi-
mation to the population average µ just by taking enough samples. We choose
a degree of approximation (ε) and a probability level, and that sets the number
of samples:

n =
σ

δε2

guarantees that the probability of being off by more than ε is at most δ.

Central Limit Theorem

The central limit theorem (CLT) is the most important result in statistics.
X1, . . . Xn are independent, again, with mean µ and variance σ2. Then for

large n

n∑
i=1

Xi ∼ N (nµ, nσ2)

Xn ∼ N (µ,
σ2

n
)

and more exactly,
Xn − µ

σ/
√

n
∼ N (0, 1)

Moral: the sampling distribution of the mean will be Gaussian, if you just
take enough independent samples.

Why? Basically: the Gaussian distribution is “stable”:
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• the sum of two independent Gaussians is another Gaussian;

• the product of a Gaussian and a constant is a Gaussian

So averaging — which is adding independent variables, and dividing by con-
stants — leaves Gaussians alone. So non-Gaussian distributions tend to be “at-
tracted” to Gaussians, when you add up enough of them.1 Notice that, because
of the two facts I just mentioned, the central limit theorem always holds exactly
if X itself is Gaussian, rather than just being a large-sample approximation.

Rule of thumb: the CLT ought to hold pretty well by n = 30, or at the worst
n = 100. Something’s probably wrong if it’s not working by that point.

Application: the Gaussian approximation to the binomial, which we saw
before, is an instance of the CLT. The binomial, remember, is a sum of n
independent Bernoulli variables, each with mean p and variance p(1− p). So if
B ∼ Bin(n, p), by the central limit theorem, if n is large

B

n
∼ N (p, p(1− p)/n)

B ∼ N (np, np(1− p))
B ∼ N (E [B] ,Var (B))

If you’re measuring the result of many independent random variables, each of
which makes some small, but not necessarily equal contribution to the outcome,
you should expect the result to be Gaussian. We’ll see more about this next
time, under the heading of “propagation of errors”.

In the bad old days before computers, you had to work out the sampling
distribution by hand, using clever math. A lot of old-fashioned statistics assumes
things are Gaussian, or Poisson, etc., because in those special cases, you can
compute the sampling distribution of important statistics, like the median or
the variance. Part of the importance of the central limit theorem was that
it gave people a way around this, by providing a general mathematical result
about the sampling distribution of an especially important statistic, namely
the sample mean. You could then devote your time to turning the statistic
you cared about into some kind of sample mean. These days, however, it’s
comparatively simple to just simulate sampling from whatever distribution we
like, and calculate the statistic for each of the simulated samples. We can
make the simulated distribution come arbitrarily close to the real sampling
distribution just by simulating often enough, which is generally fast. We’ll see
some examples of this later on. Even with simulation, however, we’ll still see
that the central limit theorem is incredibly important to statistics.

1There are stable non-Gaussian distributions, but they have infinite variance, so you won’t
see them very often.
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