
Lecture 6: Discrete Random Variables

19 September 2005

1 Expectation

The expectation of a random variable is its average value, with weights in the
average given by the probability distribution

E [X] =
∑

x

Pr (X = x)x

If c is a constant, E [c] = c.
If a and b are constants, E [aX + b] = aE [X] + b.
If X ≥ Y , then E [X] ≥ E [Y ]
Now let’s think about E [X + Y ].

E [X + Y ] =
∑
x,y

(x + y)Pr (X = x, Y = y)

=
∑
x,y

xPr (X = x, Y = y) +
∑
x,y

yPr (X = x, Y = y)

=
∑

x

x
∑

y

Pr (X = x, Y = y) +
∑

y

y
∑

x

Pr (X = x, Y = y)

by total probability,
∑

x Pr (X = x, Y = y) = Pr (X = x), likewise
∑

x Pr (X = x, Y = y) =
Pr (Y = y). So,

E [X + Y ] =
∑

x

xPr (X = x) +
∑

y

yPr (Y = y)

= E [X] + E [Y ]

Notice that E [X] works just like a mean; in fact we can think of it as being
the population mean (as opposed to the sample mean).

The variance is the expectation of (X −E [X])2.

Var (X) =
∑

x

p(x)(x−E [X])2
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which we can show is E
[
X2

]
− (E [X])2.

Var (X) = E
[
(X −E [X])2

]
= E

[
X2 − 2XE [X] + (E [X])2

]
= E

[
X2

]
−E [2XE [X]] + E

[
(E [X])2

]
Now E [X] is just another constant, so E

[
(E [X])2

]
= (E [X])2, and E [2XE [X]] =

2E [X]E [X] = 2(E [X])2. So

Var (X) = E
[
X2

]
− 2(E [X])2 + (E [X])2

= E
[
X2

]
− (E [X])2

as promised.
The main rule for variance is this:

Var (aX + b) = a2Var (X)

It’s not generally true that Var (X + Y ) = Var (X) + Var (Y ); we’ll see when
it’s true later.

1.1 Some useful results

A basic result about expectations is the Markov inequality: if X is a non-
negative random variable, and a is a positive constant, then

Pr (X ≥ a) ≤ E [X]
a

Proof: Let A = {X ≥ a}. So X ≥ a1A: either 1A = 0, in which case X ≥ 0, or
else 1A = 1, but then X ≥ a. So E [X] ≥ E [a1A] = aE [1A] = aPr (X ≥ a).

The Chebyshev inequality is a special case of the Markov inequality, but
a very useful one. It’s plain that (X −E [X])2 ≥ 0, so applying the Markov
inequality gives

Pr
(
(X −E [X])2 ≥ a2

)
≤ Var (X)

a2

Taking the square root of the term inside the left-hand side,

Pr (|X −E [X]| ≥ a) ≤ Var (X)
a2

The Chebyshev inequality helps give meaning to the variance: it tells us about
how unlikely it is for the random variable to depart very far from its mean.
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2 Independent r.v.s

We’ll say that random variables are independent if their probability distributions
factor, Pr (X = x, Y = y) = Pr (X = x) Pr (Y = y).

If the variables are independent, then E [XY ] = E [X]E [Y ].

E [XY ] =
∑
x,y

xyPr (X = x, Y = y)

=
∑

x

∑
y

xyPr (X = x, Y = y)

=
∑

x

∑
y

xyPr (X = x) Pr (Y = y)

=
∑

x

xPr (X = x)
∑

y

yPr (Y = y)

=
∑

x

xPr (X = x)E [Y ]

= E [Y ]
∑

x

xPr (X = x)

= E [Y ]E [X]

This isn’t the only time that E [XY ] = E [X]E [Y ], though.
Here’s where independence gets important: what’s the variance of X + Y ?

Var (X + Y ) = E
[
(X + Y )2

]
− (E [X + Y ])2

= E
[
X2 + 2XY + Y 2

]
− (E [X] + E [Y ])2

= E
[
X2

]
+ 2E [XY ] + E

[
Y 2

]
−

[
(E [X])2 + 2E [X]E [Y ] + (E [Y ])2

]
= E

[
X2

]
− (E [X])2 + E

[
Y 2

]
− (E [Y ])2 + 2E [XY ]− 2E [X]E [Y ]

= Var (X) + Var (Y ) + 2E [XY ]− 2E [X]E [Y ]

But we’ve just seen that E [XY ] = E [X]E [Y ] if X and Y are independent, so
then

Var (X + Y ) = Var (X) + Var (Y )

3 Binomial random variables

Recall that the distribution of the binomial is

ProbX = x =
(

n

x

)
px(1− p)n−x

and that it’s the sum of n independent Bernoulli variables with parameter p.
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How do we know this is a valid probability distribution? It’s clearly ≥ 0 for
all x, but how do I know it sums to 1? Because of the binomial theorem from
algebra (which is where the name comes from).

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k

(p + (1− p))n =
n∑

k=0

(
n

k

)
pk(1− p)n−k

1n =
n∑

k=0

(
n

k

)
pk(1− p)n−k

1 =
n∑

k=0

(
n

k

)
pk(1− p)n−k

To find the mean and variance, we could either do the appropriate sums
explicitly, which means using ugly tricks about the binomial formula; or we could
use the fact that X is a sum of n independent Bernoulli variables. Because the
Bernoulli variables have expectation p, E [X] = np. Because they have variance
p(1− p), Var (X) = np(1− p).

4 Geometric random variables

Suppose we keep trying independent Bernoulli variables until we have a success;
each has probability of success p. Then the probability that the number of
failures is k is (1− p)k

p. (Be careful, some people use p as the probability of
failure here, i.e. they reverse p and 1− p.)

First, check that this weird thing is a valid probability distribution — does
it sum to one? Yes:

∞∑
k=0

(1− p)k
p = p

∞∑
k=0

(1− p)k = p
1

1− (1− p)
= p

1
p

= 1

This uses the geometric series, the fact that
∑

pk = 1/(1− p), if p is between 0
and 1.

Now let’s think about the mean.

E [X] =
∞∑

k=0

k(1− p)k
p = p

∞∑
k=1

k(1− p)k = p
1
p2

=
1
p

Similarly (but more involvedly) the variance is (1− p)/p2.

4.1 Negative binomial random variables

Instead of just getting one success, we might keep going until we get r of them.
The probability distribution then is just Pr (X = k) =

(
k−1
r−1

)
pr(1− p)k−r, k ≥ r.
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If we think of W1 as the number of trials we have to make to get the first success,
and then W2 the number of further trials to the second success, and so on, we
can see that X = W1 + W2 + . . . + Wr, and that the Wi are independent and
geometric random variables. So E [X] = r/p, and Var (X) = r(1− p)/p2.

5 Poisson random variables

Think about a very large number of Bernoulli trials, where n → ∞, but the
expected number of successes stays constant, say λ. For instance, suppose we’re
looking at the number of particles emitted by a chunk of radioactive substance
over one-second intervals of time. Every atom has a certain probability to decay
over a given unit of time; as we make the time intervals smaller, we make those
probabilities smaller, but the average total should still come to the same number.

If we have only a finite n, but n is very large, so p = λ/n.

Pr (X = k) =
(

n

k

)
pk(1− p)k

=
n!

k!(n− k)!
pk

(1− p)k
(1− p)n

Since n is large, we can use Stirling’s approximation on n! and (n − k)!, so
n! ≈ nn and (n− k)! ≈ (n− k)n−k ≈ nn−k.

Pr (X = k) ≈ nk

k!
pk

(1− p)k

(
1− λ

n

)n

→ λk

k!
e−λ

because lim (1 + x/n)n = ex.
We can check that the probability adds up to one, because

∞∑
k=0

λk

k!
= eλ

We can also get the mean:

E [X] =
∞∑

k=0

k
λk

k!
e−λ

=
∞∑

k=1

k
λk

k!
e−λ

=
∞∑

k=1

λ
λk−1

(k − 1)!
e−λ
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= λ
∞∑

k=1

λ
λk−1

(k − 1)!
e−λ

= λ
∞∑

k=0

λk

k!
e−λ

= λ

The easiest way to get the variance is to first calculate E [X(X − 1)], because
this will let us use the same sort of trick about factorials and the exponential
function again.

E [X(X − 1)] =
∞∑

k=0

k(k − 1)
λk

k!
e−λ

E
[
X2 −X

]
=

∞∑
k=2

λk

(k − 2)!
e−λ

E
[
X2

]
−E [X] = λ2

∞∑
k=2

λk−2

(k − 2)!
e−λ

= λ2
∞∑

k=0

λk

k!
e−λ

= λ2

So E
[
X2

]
= E [X] + λ2.

Var (X) = E
[
X2

]
− (E [X])2

= E [X] + λ2 − λ2

= E [X] = λ

6 Adding Many Independent Random Variables

Remember the Chebyshev inequality:

Pr (|X −E [X]| ≥ a) ≤ Var (X)
a2

Let’s look at the sum of a whole bunch of independent random variables with
the same distribution, Sn =

∑n
i=1 Xi.

We know that E [Sn] = E [
∑n

i=1 Xi] =
∑

E [Xi] = nE [X1], because they all
have the same expectation. Because they’re independent, and all have the same
variance, Var (Sn) = nVar (X1). So

Pr (|Sn − nE [X1]| ≥ a) ≤ nVar (X1)
a2
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Now, notice that Sn/n is just the sample mean, if we draw a sample of size n.
So we can use the Chebyshev inequality to estimate the chance that the sample
mean is far from the true, population mean, which is the expectation.

Pr
(∣∣∣∣Sn

n
−E [X1]

∣∣∣∣ ≥ ε

)
= Pr (|Sn − nE [X1]| ≥ nε)

≤ nVar (X1)
n2ε2

≤ Var (X1)
nε2

Observe that whatever ε is, the probability must go to zero like 1/n (or faster).
So the probability that the sample mean differs from the population mean by
as much as ε can be made arbitrarily small, by taking a large enough sample.
This is the law of large numbers.
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