
Lecture 7: Continuous Random Variables

21 September 2005

1 Our First Continuous Random Variable

The back of the lecture hall is roughly 10 meters across. Suppose it were exactly
10 meters, and consider throwing paper airplanes from the front of the room
to the back, and recording how far they land from the left-hand side of the
room. This gives us a continuous random variable, X, a real number in the
interval [0, 10]. Suppose further that the person throwing paper airplanes has
really terrible aim, and every part of the back wall is as likely as evry other —
that X is uniformly distributed. All of the random variables we’ve looked
at previously have had discrete sample spaces, whether finite (like the Bernoulli
and binomial) or infinite (like the Poisson). X has a continuous sample space,
but most things work very similarly.

2 The Cummulative Distribution Function

For instance, we can ask about the probability of events. What is the probability
that 0 ≤ X ≤ 10, for instance? Clearly, 1. What is the probability that
0 ≤ X ≤ 5? Well, since every point is equally likely, and the interval [0, 5] is
half of the total interval, Pr (0 ≤ X ≤ 5) = 5/10 = 0.5. Going through the same
reasoning, the probability that X belongs to any interval is just proportional to
the length of the interval: Pr (a ≤ X ≤ b) = b−a

10 , if a ≥ 0 and b ≤ 10.
Let’s plot Pr (0 ≤ X ≤ x) versus x.
Now, I only plotted this over the interval [0, 10], but we can extend this

plot pretty easily, by looking at Pr (X ≤ x) = Pr (−∞ < X ≤ x). If x < 0, this
probability is exactly 0, because we know X is non-negative. If x > 10, this
probability is exactly 1, because we know X is less than ten. And if x is between
0 and 10, then Pr (X ≤ x) = Pr (0 ≤ X ≤ x). So then we get this plot

What we have plotted here is the cummulative distribution function
(CDF) of X. Formally, the CDF of any continuous random variable X is F (x) =
Pr (X ≤ x), where x is any real number. When X is uniform over [0, 10], then
we have the following CDF:

F (x) =

 0 x < 0
x
10 0 ≤ x ≤ 10
1 x > 10
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Figure 1: Probability that X, uniformly distributed over [0, 10], lies in the
interval [0, x].
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Figure 2: Probability that X, uniformly distributed over [0, 10], is less than or
equal to x.
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For any CDF, we have the following properties:

1. The CDF is non-negative: F (x) ≥ 0. Probabilities are never negative.

2. The CDF goes to zero on the far left: limx→−∞ F (x) = 0. X is never less
than −∞.

3. The CDF goes to one on the far right: limx→∞ F (x) = 1. X is never more
than ∞.

4. The CDF is non-decreasing: F (b) ≥ F (a) if b ≥ a. If b ≥ a, then the event
X ≤ a is a sub-set of the event X ≤ b, and sub-sets never have higher
probabilities. (This was a problem in HW2.)

Any function which satisfies these four properties can be used as the CDF of
some random variable or other.

The reason we care about the CDF is that if we know it, we can use it to
get the probability of any event we care about. For instance, suppose I tell you
the CDF of X, and ask for Pr (a ≤ X ≤ b). We can find that from the CDF.
Start with Pr (X ≤ b) = F (b). By total probability,

Pr (X ≤ b) = Pr ((X ≤ b) ∩ (X ≤ a)) + Pr ((X ≤ b) ∩ (X ≤ a)′)

Now notice that, since a < b, (X ≤ b) ∩ (X ≤ a) = (X ≤ a). Also,
(X ≤ b) ∩ (X ≤ a)′ = (a ≤ X ≤ b). So

Pr (X ≤ b) = Pr (X ≤ a) + Pr (a ≤ X ≤ b)
F (b) = F (a) + Pr (a ≤ X ≤ b)

Pr (a ≤ X ≤ b) = F (b)− F (a)

For instance, with our uniform-over-[0, 10] variable X, Pr (5 ≤ X ≤ 6) = F (6)−
F (5) = 0.6 − 0.5 = 0.1, as we’d already reasoned, and Pr (5 ≤ X ≤ 12) =
F (12)− F (5) = 1− 0.5 = 0.5.

Say we want to know Pr ((0 ≤ X ≤ 2) ∪ (8 ≤ X ≤ 10)). Notice that the
two intervals are disjoint events, because they don’t overlap. The probabil-
ity of disjoint events adds, and we get the sum of the probabilities of the
two intervals, which we know how to do. If the intervals overlap, say in
Pr ((2 ≤ X ≤ 6) ∪ (4 ≤ X ≤ 8)), then we use the rule for unions:

Pr ((2 ≤ X ≤ 6) ∪ (4 ≤ X ≤ 8)) = Pr ((2 ≤ X ≤ 6)) + Pr ((4 ≤ X ≤ 8))
−Pr ((2 ≤ X ≤ 6) ∩ (4 ≤ X ≤ 8))

Notice that the intersection is just another interval: (2 ≤ X ≤ 6) ∩ (4 ≤ X ≤
8) = (4 ≤ X ≤ 6). This is always true: two intervals are either disjoint, or their
intersection is another interval. Using this, it turns out that pretty much any
event for real-valued variables which you can describe can be written as a union
of dis-joint intervals.1 Since we can find the probability of any interval from the
CDF, we can use the CDF to find the probability of arbitrary events.

1The technicalities behind the “pretty much” form the subject of measure theory in math-
ematics. We won’t go there.
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3 The Probability Density Function

Let’s try to figure out what the probability of X = 5 is, in our uniform example.
We know how to calculate the probability of intervals, so let’s try to get it as a
limit of intervals around 5.

Pr (4 ≤ X ≤ 6) = F (6)− F (4) = 0.2
Pr (4.5 ≤ X ≤ 5.5) = F (5.5)− F (4.5) = 0.1

Pr (4.95 ≤ X ≤ 5.05) = F (5.05)− F (4.95) = 0.01
Pr (4.995 ≤ X ≤ 5.005) = F (5.005)− F (4.995) = 0.001

Well, you can see where this is going. As we take smaller and smaller intervals
around the point X = 5, we get a smaller and smaller probability, and clearly
in the limit that probability will be exactly 0. (This matches what we’d get
from just plugging away with the CDF: F (5) − F (5) = 0.) What does this
mean? Remember that probabilities are long-run frequencies: Pr (X = 5) is
the fraction of the time we expect to get the value of exactly 5, in infinitely
many repetitions of our paper-airplane-throwing experiment. But with a really
continuous random variable, we never expect to repeat any particular value —
we could come close, but there are uncountably many alternatives, all just as
likely as X = 5, so hits on that point are vanishingly rare.

Talking about the probabilities of particular points isn’t very useful, then, for
continuous variables, because the probability of any one point is zero. Instead,
we talk about the density of probability. In physics and chemistry, similarly,
when we deal with continuous substances, we use the density rather than the
mass at particular points. Mass density is defined as mass per unit volume;
let’s define probability density the same way. More specifically, let’s look the
probability of a small interval around 5, say [5− ε, 5+ ε], and divide that by the
length of the interval, so we have probability per unit length.

Pr (5− ε ≤ X ≤ 5 + ε)
2ε

=
F (5 + ε)− F (5− ε)

2ε
=

5 + ε− (5− ε)
10

1
2ε

=
2ε

(2ε)(10)
=

1
10

Clearly, there was nothing special about the point 5 here; we could have used
any point in the interval [0, 10], and we’d have gotten the same answer.

Let’s formally defined the probability density function (pdf) of a random
variable X, with cummulative distribution function F (x), as the derivative of
the CDF

f(x) =
dF

dx

To make this concrete, let’s calculate the pdf for our paper-airplane example.

f(x) =

 0 x < 0
1
10 0 ≤ x < 10
0 x > 10
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Figure 3: Probability density function of a random variable uniformly dis-
tributed over [0, 10].
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From the fundamental theorem of calculus,

F (x) =
∫ x

−∞
f(y)dy

So, for any interval [a, b],

Pr (a ≤ X ≤ b) =
∫ b

a

f(x)dx

That is, the probability of a region is the area under the curve of the density in
that region. For small ε,

Pr (x ≤ X ≤ x + ε) ≈ εf(x)

Notice that I write the CDF with an upper-case F , and the pdf with a lower-case
f — the density, which is about small regions, gets the small letter.

With discrete variables, we used the probability mass function p(x) to keep
track of the probability of individual points. With continuous variables, we’ll
use the pdf f(x) similarly, to keep track of probability densities. We’ll just have
to be careful of the fact that it’s a probability density and not a probability —
we’ll have to do integrals, and not just sums.

From the definition, and the properties of CDFs, we can deduce some prop-
erties of pdfs:

• pdfs are non-negative: f(x) ≥ 0. CDFs are non-decreasing, so their deriva-
tives are non-negative.

• pdfs go to zero at the far left and the far right: limx→−∞ f(x) = limx→∞ f(x) =
0. Because F (x) approaches fixed limits at ±∞, its derivative has to go
to zero.

• pdfs integrate to one:
∫∞
−∞ f(x)dx = 1. The integral is F (∞), which has

to be 1.

Any function which satisfies these properties can be used as a pdf.
Suppose we have a function g which satisfies the first two properties of a

pdf, but
∫∞
−∞ g(x)dx = C 6= 1. Then we can normalize g to get a pdf:

f(x) =
g(x)
C

=
g(x)∫∞

−∞ g(x)dx

is a pdf, because it satisfies all three properties.
To see that in action, let’s say g(x) = e−λx, if x ≥ 0, and is zer otherwise.

Then ∫ ∞

−∞
g(x)dx =

∫ ∞

0

e−λxdx =
−1
λ

[
e−λx

]∞
0

=
1
λ

so

f(x) =
g(x)
1/λ

=
{

λe−λx x ≥ 0
0 x < 0
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Figure 4: Exponential density with λ = 7.
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is a pdf. This is called the exponential density, and we’ll be using it a lot.
(See figure 4.)

What is the corresponding CDF?

F (x) =
∫ x

−∞
f(y)dy

=
{ ∫ x

0
λe−λydy x ≥ 0

0 x < 0

=
{

λ−1
λ [e−λy]x0 x ≥ 0

0 x < 0

=
{
−[e−λx − 1] x ≥ 0

0 x < 0

=
{

1− e−λx x ≥ 0
0 x < 0

(See Figure 5.)
Let’s check that this is a valid cummulative distribution function:

1. Non-negative: If x < 0, then F (x) = 0, which is non-negative. If x ≥ 0,
then e−λx ≤ 1, so F (x) = 1− e−λx ≥ 0.

2. Goes to 0 on the left: F (x) = 0 if x < 0, so

lim
x→−∞

F (x) = 0

3. Goes to 1 on the right:

lim
x→∞

F (x) = lim
x→∞

1− e−λx = 1− lim
x→∞

e−λx = 1

4. Non-decreasing: If 0 < a < b, then

F (b)− F (a) = 1− e−λb − (1− e−λa) = e−λa − e−λb > 0

If a ≤ 0 < b, then F (b) > 0, F (a) = 0, and clearly F (b) > F (a).

So the F we obtain by integration makes for a good cummulative distribution
function.

The next figure summarizes the relationships between cummulative distribu-
tion functions, probability density functions, and un-normalized functions like
g.

Expectation

I said that for most purposes the probability density function f(x) of a continu-
ous variable works like the probability mass function p(x) of a discrete variable,
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Figure 5: Cummulative distribution function of an exponential random variable
with λ = 7.
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and one place that’s true is when it comes to defining expectations. Remember
that for discrete variables

E [X] ≡
∑

x

xp(x)

For a continuous variable, we just substitute f(x) for p(x) and an integral for a
sum:

E [X] ≡
∫ ∞

−∞
xf(x)dx

All of the rules which we learned for discrete expectations still hold for contin-
uous expectations.

Let’s see how this works for the uniform-over-[0, 10] example.

E [X] =
∫ ∞

−∞
xf(x)dx =

∫ 10

0

x
1
10

dx =
1
10

1
2
[
x2

]10
0

=
1
10

1
2
(100− 0) = 5

Notice that 5 is the mid-point of the interval [0, 10]. Suppose we had a uniform
distribution over another interval, say (to be imaginative) [a, b]. What would the
expectation be? First, find the CDF F (x), from the same kind of reasoning we
used on the interval [0, 10]: the probability of an interval is its length, divided by
the total length. Then, find the pdf, f(x) = dF/dx; finally, get the expectation,
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by integrating xf(x).

F (x) =


0 x < a

x−a
b−a a ≤ x ≤ b

1 b < x

f(x) =


0 x < a
1

b−a a ≤ x ≤ b

0 x > b

E [X] =
∫ b

a

x
1

b− a
dx

=
1

b− a

1
2
[
x2

]b

a

=
1

b− a

b2 − a2

2

=
1

b− a

(b− a)(b + a)
2

=
b + a

2

In words, the expectation of a uniform distribution is always the mid-point of
its range.

4 Uniform Random Variables in General

We’ve already seen most of the important results for uniform random variables,
but we might as well collect them all in one place. The uniform distribution on
the interval [a, b], written U(a, b) or Uni(a, b), has two parameters, namely the
end-points of the distribution. The CDF is F (x) = fracx− ab− a inside the
interval, and the pdf f(x) = 1

b−a . The expectation E [X] = b+a
2 , the mid-point

of the interval, and the variance Var (X) = (b−a)2

12 .
Notice that if X ∼ U(a, b), then cX + d ∼ U(ca + d, cb + d).

4.1 Turning Non-Uniform Random Variables into Uni-
form Ones

Suppose X is a non-uniform random variable with CDF F . Then F (X) is again
a random variable, but it’s always uniform on the interval [0, 1] — because
F (X) ≤ 0.5 exactly half the time, F (X) ≤ 0.25 exactly a quarter of the time,
and so on. This is one way to test whether you’ve guessed the right distribution
for a non-uniform variable: if you think the CDF is F , then calculate F (xi) for
all the data points you have, and the result should be very close to uniform on
the unit interval. (We will come back to this idea later.)
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4.2 Turning Uniform Random Variables into Non-Uniform
Ones

Computer random number generators typically produce random numbers uni-
formly distributed between 0 and 1. If we want to simulate a non-uniform
random variable, and we know its distribution function, then we can reverse the
trick in the last section. If Y ∼ U(0, 1), then F−1(Y ) has cummulative distribu-
tion function F . We can think of this as follows: our random number generator
gives us a number y between 0 and 1. We then slide along the domain of the
CDF F , starting at the left and working to the right, until we come to a number
x where F (x) = y. Because F is non-decreasing, we’ll never have to back-track.
This x is F−1(y), by definition. Because, again, F is non-decreasing, we know
that F−1(a) ≤ F−1(b) if and only if a ≤ b. If we pick a = y and b = F (x), then
this gives us that F−1(y) ≤ x if and only if y ≤ F (x). So if 0 ≤ x ≤ 1,

Pr
(
F−1(Y ) < x

)
= Pr (Y < F (x)) = F (x)

because, remember, Y is uniformly distributed between 0 and 1.
Using this trick assumes that we can compute F−1, the inverse of the CDF.

This isn’t always available in closed form.

5 Exponential Random Variables

Exponential random variables generally arise from decay processes. The idea
is that things — radioactive atoms, unstable molecules, etc. — have a certain
probability per unit time of decaying, and we ask how long we have to wait
before seeing the decay. (The model applies to any kind of event with a constant
rate over time.) They also arise in statistical mechanics and physical chemistry,
where the probability that a molecule has energy E is proportional to e−E/kBT ,
where T is the absolute temperature and kB is Boltzmann’s constant.

There’s a constant probability of decay per unit time, call it (with malice
aforethought) λ. So let’s ask what the probability is that the decay happened
by time t, i.e., Pr (0 ≤ T ≤ t). We can imagine dividing that interval up into n
equal parts. The probability of decay in each time-interval then is λt/n. The
probability of no decay is

≈
(

1− λt

n

)n

because we can’t have had a decay event in any of the n sub-intervals. So

Pr (0 ≤ T ≤ t) ≈ 1−
(

1− λt

n

)n

Since time is continuous, we should really take the limit as n →∞:

Pr (0 ≤ T ≤ t) = lim
n→∞

1−
(

1− λt

n

)n
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= 1− lim
n→∞

(
1− λt

n

)n

= 1− e−λt

which is the CDF of the exponential distribution.
The expectation of an exponential variable is E [X] = 1/λ; its variance,

E [X] = 1/λ2. I leave showing both of these facts as exercises; there are several
ways to do it, including integration by parts.

6 Discrete vs. Continuous Variables

Discrete Continuous
p.m.f. p(x) ≡ Pr (X = x) p.d.f. f(x) ≡ dF

dx ≈
Pr(x≤X≤x+ε)

ε∑
(. . .) p(x)

∫
(. . .) f(x)dx

CDF F (x) ≡ Pr (X ≤ x) =
∑y=x

y=−∞ p(y) CDF F (x) ≡ Pr (X ≤ x) =
∫ x

−∞ f(y)dy

E [X] ≡
∑

x xp(x) E [X] ≡
∫∞
−∞ xf(x)dx
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