
Lecture 8: More Continuous Random Variables

26 September 2005

Last time: the exponential. Going from saying the density ∝ e−λx, to
f(x) = λe−λx, to the CDF F (x) = 1− e−λx. Pictures of the pdf and CDF.

Today: the Gaussian or normal distribution. (I prefer Gaussian.)
Starting point: Make the density proportional to e−z2/2. This falls off much

faster than the ordinary exponential. Also, we can have it work on both sides
of the origin. (Why 1/2? It turns out to make life nicer for us later.) (Why z?
Tradition.)

To get the density, we need the normalizing factor, which is
∫∞
−∞ e−z2/2dz.

This is
√

2π. There are several proofs, but none are really elementary. (There’s
a nice one involving contour integrals in the complex plane, for instance.) Still,
trust me on this one.

We now have a probability density,

f(z) =
1√
2π

e−z2/2

which looks like this: This is the standard Gaussian or standard normal
density. (I like “Gaussian” better.) It’s the famous bell curve.

The CDF of the standard Gaussian is an important function, so much so
it has its own notation, Φ(z) (instead of the usual F (z)). It’s also called the
error function. Unfortunately, it doesn’t have any nice analytical form, but
there are well-known numerical approximations which are very accurate, at
least as accurate at the numerical approximations for sine, cosine, logarithm,
etc. From the symmetry of the pdf, though, we know that Φ(0) = 0.5. Also,
from symmetry, for z > 0,

Pr (Z ≥ z) = Pr (Z ≤ −z)
1− Φ(z) = Φ(−z)

The CDF of the standard Gaussian is an important function, so much so it
has its own notation, Φ(z) (instead of the usual F (z)). It’s also called the error
function. Unfortunately, it doesn’t have any nice analytical form, but there
are well-known numerical approximations which are very accurate, at least as
accurate at the numerical approximations for sine, cosine, logarithm, etc.
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Figure 1: Probability density of the standard Gaussian
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Figure 2: CDF Φ of the standard Gaussian
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At this point we can already find the mean, using the fact that e−z2/2 is
symmetric around the origin.

E [Z] =
∫ ∞

−∞

z√
2π

e−z2/2dz

=
∫ 0

−∞

z√
2π

e−z2/2dz +
∫ ∞

0

z√
2π

e−z2
dz

=
∫ ∞

0

z√
2π

e−z2/2dz −
∫ ∞

0

z√
2π

e−z2/2dz

= 0

As for the variance, Var (Z) = E
[
Z2

]
− (E [Z])2 = E

[
Z2

]
. So let’s see that.

E
[
Z2

]
=

∫ ∞

−∞

z2

√
2π

e−z2/2dz

This doesn’t cancel out, because z2 = (−z)2. In fact, one can show that this
integral works out to be exactly 1. So the standard Gaussian has mean zero
and variance 1.

What about non-standard Gaussians? Well, consider the density of X =
Z + µ. If a ≤ X ≤ b, then a− µ ≤ Z ≤ b− µ.

Pr (a− µ ≤ Z ≤ b− µ) =
∫ z=b−µ

z=a−µ

1√
2π

e−z2/2dz

=
∫ x=b

x=a

1√
2π

e−(x−µ)2/2dx

=
∫ x=b

x=a

fX(x)dx

fX(x) =
1√
2π

e−
(x−µ)2

2

Now consider X = σZ, σ > 0.

Pr (a ≤ X ≤ B) = Pr
(

a

σ
≤ Z ≤ b

σ

)
=

∫ z= b
σ

z= a
σ

1√
2π

e−z2/2dz

=
∫ x=b

x=a

1√
2π

e−z2/2σ2 dx

σ

=
∫ x=b

x=a

fX(x)dx

fX(x) =
1√

2πσ2
e−

x2

2σ2
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Putting these together, X = σZ + µ has the density

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

From the rules for expectation, E [X] = σE [Z] + µ = µ. From the rules for
variance, Var (X) = σ2Var (Z) = σ2. We say that the equation above gives the
distribution of a Gaussian with mean µ and variance σ2, N (µ, σ2). An arbitrary
Gaussian can be transformed into standard form by Z = (X − µ)/σ. By stan-
dardizing a Gaussian random variable, we keep ourselves from having to think
about any distribution function other than Φ. Two numbers µ and σ completely
determine the distribution, and completely specify the transformation back to
standard form; they’re the parameters.

The sum of two Gaussian variables is always another Gaussian, whether or
not they are independent. A Gaussian times a constant is Gaussian. A Gaussian
plus a constant is Gaussian.

Here are some important facts:

Pr (|Z| ≤ 1) = Φ(1)− Φ(−1) = 0.6826895
Pr (|Z| ≤ 2) = Φ(2)− Φ(−2) = 0.9544997
Pr (|Z| ≤ 3) = Φ(3)− Φ(−3) = 0.9973002

By applying the standardization above, we can see that a Gaussian falls within
one standard deviation of its mean about two-thirds of the time, within two
standard deviations about ninety-five percent of the time, and within three
standard deviations about 99.7% percent of the time.

Remember the Chebyshev inequality from before:

Pr (|X − µ| ≥ kσ) ≤ Var (X)
σ2

If X is Gaussian, then

Pr (|X − µ| ≥ kσ) = 1− (Φ(k)− Φ(−k))

Let’s compare the probability of large deviations from the mean given by Cheby-
shev to that obtained by the Gaussian. Clearly, the Gaussian distribution is
much more tightly concentrated around its mean than arbitrary distributions.
This will be very useful later.

We will see starting next week that the sum of independent random variables
tends towards a Gaussian; this is why it is so important and so ubiquitous.

In particular, let’s look at a binomial distribution with contant p and growing
n. I claim that X Bin(n, p) approaches in distribution N (np, np(1− p)). Let’s
look at some plots, keeping p = 0.5 for simplicity.

There are a number of other distributions which are closely related to the
Gaussian.
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Figure 3: Comparison of the probability of large deviations for the Gaussian
distribution (solid line) against the Chebyshev bounds, which apply to all dis-
tributions (dashed line). The lower figure shows the probability on a log scale.
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Figure 4: Binomial distribution (solid line) versus a Gaussian density with the
same mean and variance (dotted line), with p = 0.5 and n = 4, 10 and 30,
respectively.
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χ2 distribution: if Z is a standard Gaussian, then the distribution of Z2 is
said to be “χ2 with one degree of freedom”:

fχ2,1(x) =
x−1/2e−x/2

√
2π

E [X] = 1
Var (X) = 2

This comes up a lot in statistical testing, especially in the following variant
form. If Z1, Z2 . . . Zn are all independent standard normals, then

∑n
i=1 Z2

i has
a χ2 distribution with n degrees of freedom:

fχ2,n =
xn/2−1e−x/2

Γ(n/2)2n/2

E [X] = n

Var (X) = 2n

where Γ(x) =
∫∞
0

tx−1e−tdt, the gamma function. If x is an integer, then
Γ(x) = (x− 1)!. For any x, Γ(x) = (x− 1)Γ(x− 1). Finally, Γ(1/2) =

√
π.

The χ2 distribution is a special case of a broader family of distributions
called the γ distributions, which have the pdf

fγ(α,θ)(x) =
xα−1e−x/θ

Γ(α)θα

They’re defined over non-negative x. If α > 1, then for small x this looks like
xα−1, and rises, but for large x it always looks like an exponential. In fact, the
exponential is the space case where α = 1. For more, see the book.

If Y = log X is Gaussian, we say that X is log-Gaussian or lognormal.
Then X ≥ 0, and the distribution is specified by the mean and variance of Y ,
i.e. of log X, call them M and S2. In explicit form,

flognormal(x) =
e−

(log x−M)2

2S2

x
√

2πS2

E [X] = eM+ S2
2

Var (X) = e2M+S2
(
eS2

− 1
)

The lognormal is the theoretical distribution that best fits the observed distri-
bution of income and wealth. The mean and variance vary from country to
country, but the general form doesn’t. One consequence of this is that rich
people are really a lot richer than ordinary people, and that the mean isn’t so
representative as the median. The median income is after all eM , but the mean
is much higher! For instance, median household income in the United States
is $42,228 (as of 2001), and the standard deviation of the log income is about
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Figure 5: PDF and CDF of a gamma distribution with α = 3 and θ = 1.

9



0.879. This gives a mean income of about $62 thousand, which is very close to
the true value of $58 thousand.1

1The main problem with the log-normal model of income distribution is that there are
slightly more really poor people than it allows for, and the rich people are much, much richer.
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Figure 6: Density and CDF of a lognormal distribution with M = 42, 228 and
S = 0.879, based on US income data.
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