36-220 Engineering Statistics and Quality Control Spring 2004 Midterm #1 – March 3, 2004

Name:

Lab Section:

- You have 50 minutes to complete the exam.
- You must sit at least one seat apart from any neighbor on EACH side (left, right).
- You may use ONLY the table(s) provided to you today, one $8.5" \times 11"$ formula sheet (both sides) and YOUR OWN calculator (no sharing!).
- Answer all questions/problems, showing your work (this includes setting up the problem– defining events and random variables clearly) and all calculations.
- Give relevant reasoning and formulas.
- Keep the exam stapled together. If you need extra space to complete a problem, write on the back side of THAT problem's sheet.

Problem	Points Possible	Points Awarded
1	20 points	
2	20 points	
3	15 points	
4	20 points	
5	15 points	
6	10 points	
Total	100 points	

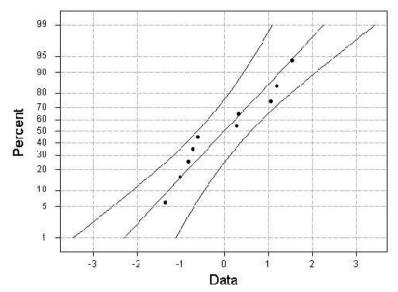
Good luck!

1. (20 points) The density function of X is given by

$$f(x) = \begin{cases} a + bx^2 & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

If $E(X) = \frac{3}{5}$, find a, b.

2. (20 points) A k-out-of-n circuit is one that requires k components out of n to be functioning so that the circuit may function. Suppose that each component functions independently with probability 0.9. What is the probability that a 2-out-of-3 circuit functions?

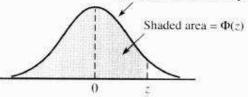

- 3. (15 points) It is known that screws produced by a certain company will be defective with probability .01 independently of each other. The company sells the screws in packages of 10 and offers a money-back guarantee if more than 1 of the 10 screws is defective.
 - (a) (5 points) What distribution is suitable for this problem? Why?

(b) (10 points) What proportion of packages sold must the company replace?

- 4. (20 points) A machine used to regulate the amount of dye dispensed for mixing shades of paint can be set so that it discharges an average of μ milliliters (mL) of dye per can of paint. The amount of dye discharged is known to have a normal distribution with standard deviation of .4 mL.
 - (a) (10 points) Suppose (for this part of the problem only) that the average amount of dye discharged is 4.5 mL. What is the probability that the machine dispenses less than 3 mL?
 - (b) (10 points) If more than 6 mL of dye are discharged when making a certain shade of blue paint, the shade is unacceptable. Determine the setting for μ so that only 1% of the cans of paint will be unacceptable.

- 5. (15 points) To determine whether a metal lathe that produces machine bearings is properly adjusted, a random sample of 45 bearings is collected and the diameter of each is measured.
 - (a) (10 points) If the standard deviation of the diameters of the bearings measured over a long period of time is .001 inch, what is the approximate probability that the mean diameter of the sample of 45 bearings will lie within .0001 inch of the population mean diameter of the bearings?
 - (b) (5 points) If the population of diameters has an extremely skewed distribution, how will your approximation in part (a) be affected? Why?

6. (10 points) Suppose you were presented with data that produced the following probability plot:



Is the data approximately normally distributed? Why or why not?

Table A.3	Standard	Normal	Curve Areas
	the product of the share share		- OF # C 7 11 C C J

 $\Phi(z) = P(Z \le z) \qquad \Phi(z) = P(Z \le z)$

Standard normal density function

0.09	0.08	0.07	0.06	0.05	0.04	0.03	0.02	0.01	0.00	z
0.0002	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	-3.4
0,0003	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0005	0.0005	0.0005	-3.3
0.0005	0.0005	0.0005	0.0006	0.0006	0.0006	0.0006	0.0006	0.0007	0.0007	-3.2
0.0007	0.0007	0.0008	0.0008	0.0008	0.0008	0.0009	0.0009	0.0009	0.0010	-3.1
0.0010	0.0010	0.0011	0.0011	0.0011	0.0012	0.0012	0.0013	0.0013	0.0013	-3.0
0.0014	0.0014	0.0015	0.0015	0.0016	0.0016	0.0017	0.0017	0.0018	0.0019	-2.9
0.0019	0.0020	0.0021	0.0021	0.0022	0.0023	0.0023	0.0024	0.0025	0.0026	-2.8
0.0026	0.0027	0.0028	0.0029	0.0030	0.0031	0.0032	0.0033	0.0034	0.0035	-2.7
0.0036	0.0037	0.0038	0.0039	0.0040	0.0041	0.0043	0.0044	0.0045	0.0047	-2.6
0.0038	0.0049	0.0051	0.0052	0.0054	0.0055	0.0057	0.0059	0.0060	0.0062	-2.5
0.0064	0.0066	0.0068	0.0069	0.0071	0.0073	0.0075	0.0078	0.0080	0.0082	-2.4
0.0084	0.0087	0.0089	0.0091	0.0094	0.0096	0.0099	0.0102	0.0104	0.0107	-2.3
0.0110	0.0113	0.0116	0.0119	0.0122	0.0125	0.0129	0.0132	0.0136	0.0139	-2.2
0.0143	0.0146	0.0150	0.0154	0.0158	0.0162	0.0166	0.0170	0.0174	0.0179	-2.1
0.0183	0.0188	0.0192	0.0197	0.0202	0.0207	0.0212	0.0217	0.0222	0.0228	-2.0
0.0233	0.0239	0.0244	0.0250	0.0256	0.0262	0.0268	0.0274	0.0281	0.0287	-1.9
0.0294	0.0310	0.0307	0.0314	0.0322	0.0329	0.0336	0.0344	0.0352	0.0359	-1.8
0.0367	0.0375	0.0384	0.0392	0.0401	0.0409	0.0418	0.0427	0.0436	0.0446	-1.7
0.0455	0.0465	0.0475	0.0485	0.0495	0.0505	0.0516	0.0526	0.0537	0.0548	-1.6
0.0559	0.0571	0.0582	0.0594	0.0606	0.0618	0.0630	0.0643	0.0655	0.0668	-1.5
0.0681	0.0694	0.0708	0.0722	0.0735	0.0749	0.0764	0.0778	0.0793	0.0808	-1.4
0.0823	0.0838	0.0853	0.0869	0.0885	0.0901	0.0918	0.0934	0.0951	0.0968	-1.3
0.0985	0.1003	0.1020	0.1038	0.1056	0.1075	0.1093	0.1112	0.1131	0.1151	-1.2
0.1170	0.1190	0.1210	0.1230	0.1251	0.1271	0.1292	0.1314	0.1335	0.1357	-1.1
0.1379	0.1401	0.1423	0,1446	0.1469	0.1492	0.1515	0.1539	0.1562	0.1587	-1.0
0.1611	0.1635	0.1660	0,1685	0.1711	0.1736	0.1762	0.1788	0.1814	0.1841	-0.9
0.1867	0.1894	0.1922	0.1949	0.1977	0.2005	0.2033	0.2061	0.2090	0.2119	-0.8
0.2148	0.2177	0.2206	0.2236	0.2266	0.2296	0.2327	0.2358	0.2389	0.2420	-0.7
0.2451	0.2483	0.2514	0.2546	0.2578	0.2611	0.2643	0.2676	0.2709	0.2743	-0.6
0.2776	0.2810	0.2843	0.2877	0.2912	0.2946	0.2981	0.3015	0.3050	0.3085	-0.5
0.3121	0.3156	0.3192	0.3228	0.3264	0.3300	0.3336	0.3372	0.3409	0.3446	-0.4
0.3482	0.3520	0.3557	0.3594	0.3632	0.3669	0.3707	0.3745	0.3783	0.3821	-0.3
0.3859	0.3897	0.3936	0.3974	0.4013	0.4052	0.4090	0.4129	0.4168	0.4207	-0.2
0.4247	0.4286	0.4325	0.4364	0.4404	0.4443	0.4483	0.4522	0.4562	0.4602	-0.1
0.4641	0.4681	0.4721	0.4761	0.4801	0.4840	0.4880	0.4920	0.4960	0.5000	-0.0

_								- 197 - 19 - 197		
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9278	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1,6	0.9452	0.9463	0.9474	0,9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0,9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2,9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	().9989	0.9989	0.9989	0.9990	0.9990
3.1	().999()	0,9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

 Table A.3
 Standard Normal Curve Areas (cont.)

 $\Phi(z)=P(Z\leq z)$