
Evaluating Statistical Models

36-402, Data Analysis

18 January 2011

Optional Readings: Berk, chapter 2.

Contents

1 What Are Statistical Models For? Summaries, Forecasts, Sim-
ulators 1

2 Errors, In and Out of Sample 3

3 Over-Fitting and Model Selection 5

4 Cross-Validation 11
4.1 Data-set Splitting . 11
4.2 Cross-Validation (CV) . 12
4.3 Leave-one-out Cross-Validation 12

5 Warnings 13

6 Exercises 13

1 What Are Statistical Models For? Summaries,
Forecasts, Simulators

There are (at least) three levels at which we can use statistical models in data
analysis: as summaries of the data, as predictors, and as simulators.

The lowest and least demanding level is just to use the model as a summary
of the data — to use it for data reduction, or compression. Just as one
can use the sample mean or sample quantiles as descriptive statistics, recording
some features of the data and saying nothing about a population or a gener-
ative process, we could use estimates of a model’s parameters as descriptive
summaries. Rather than remembering all the points on a scatter-plot, say, we’d
just remember what the OLS regression surface was.

It’s hard to be wrong about a summary, unless we just make a mistake. (It
may or may not be helpful for us later, but that’s different.) When we say “the

1

slope which best fit the training data was b̂ = 4.02”, we make no claims about
anything but the training data. It relies on no assumptions, beyond our doing
the calculations right. But it also asserts nothing about the rest of the world.
As soon as we try to connect our training data to the rest of the world, we start
relying on assumptions, and we run the risk of being wrong.

Probably the most common connection to want to make is to say what other
data will look like — to make predictions. In a statistical model, with random
noise terms, we do not anticipate that our predictions will ever be exactly right,
but we also anticipate that our mistakes will show stable probabilistic patterns.
We can evaluate predictions based on those patterns of error — how big is our
typical mistake? are we biased in a particular direction? do we make a lot of
little errors or a few huge ones?

Statistical inference about model parameters — estimation and hypothesis
testing — can be seen as a kind of prediction, extrapolating from what we saw
in a small piece of data to what we would see in the whole population, or whole
process. When we estimate the regression coefficient b̂ = 4.02, that involves
predicting new values of the dependent variable, but also predicting that if we
repeated the experiment and re-estimated b̂, we’d get a value close to 4.02.

Using a model to summarize old data, or to predict new data, doesn’t commit
us to assuming that the model describes the process which generates the data.
But we often want to do that, because we want to interpret parts of the model
as aspects of the real world. We think that in neighborhoods where people have
more money, they spend more on houses — perhaps each extra $1000 in income
translates into an extra $4020 in house prices. Used this way, statistical models
become stories about how the data were generated. If they are accurate, we
should be able to use them to simulate that process, to step through it and
produce something that looks, probabilistically, just like the actual data. This
is often what people have in mind when they talk about scientific models, rather
than just statistical ones.

An example: if you want to predict where in the night sky the planets will
be, you can actually do very well with a model where the Earth is at the center
of the universe, and the Sun and everything else revolve around it. You can
even estimate, from data, how fast Mars (for example) goes around the Earth,
or where, in this model, it should be tonight. But, since the Earth is not at the
center of the solar system, those parameters don’t actually refer to anything in
reality. They are just mathematical fictions. On the other hand, we can also
predict where the planets will appear in the sky using models where all the
planets orbit the Sun, and the parameters of the orbit of Mars in that model do
refer to reality.1

We are going to focus today on evaluating predictions, for three reasons.
First, often we just want prediction. Second, if a model can’t even predict well,
it’s hard to see how it could be right scientifically. Third, often the best way
of checking a scientific model is to turn some of its implications into statistical

1We can be pretty confident of this, because we use our parameter estimates to send our
robots to Mars, and they get there.

2

predictions.

2 Errors, In and Out of Sample

With any predictive model, we can gauge how well it works by looking at its
errors. We want these to be small; if they can’t be small all the time we’d
like them to be small on average. We may also want them to be patternless
or unsystematic (because if there was a pattern to them, why not adjust for
that, and make smaller mistakes). We’ll come back to patterns in errors later,
when we look at specification testing. For now, we’ll concentrate on how big
the errors are.

To be a little more mathematical, we have a data set with points zn =
z1, z2, . . . zn. (For regression problems, think of each data point as the pair of
input and output values, so zi = (xi, yi), with xi possibly a vector.) We also have
various possible models, each with different parameter settings, conventionally
written θ. For regression, θ tells us which regression function to use, so mθ(x) or
m(x; θ) is the prediction we make at point x with parameters set to θ. Finally,
we have a loss function L which tells us how big the error is when we use a
certain θ on a certain data point, L(z, θ). For mean-squared error, this would
just be

L(z, θ) = (y −mθ(x))2

But we could also use the mean absolute error

L(z, θ) = |y −mθ(x)|

or many other loss functions. Sometimes we will actually be able to measure how
costly our mistakes are, in dollars or harm to patients. If we had a model which
gave us a distribution for the data, then pθ(z) would a probability density at
z, and a typical loss function would be the negative log-likelihood, − logmθ(z).
No matter what the loss function is, I’ll abbreviate the sample average of the
loss over the whole data set by L(zn, θ).

What we would like, ideally, is a predictive model which has zero error on
future data. We basically never achieve this:

• The world just really is a noisy and stochastic place, and this means even
the true, ideal model has non-zero error.2 If, in the usual linear regression
assumptions, Y = βX + ε, ε ∼ N (0, σ2), then σ2 sets a limit on how well
Y can be predicted, and nothing will truly get the mean-squared error
below that limit.

• Our models are never perfectly estimated. Even if our data come from a
perfect IID source, we only ever have a finite sample, and so our parameter
estimates are (almost) never quite the true, infinite-limit values. This is

2This is so even if you believe in some kind of ultimate determinism, because the variables
we plug in to our predictive models are not complete descriptions of the physical state of the
universe, but rather immensely coarser, and this coarseness shows up as randomness.

3

the origin of the variance term in the bias-variance decomposition. But
as we get more and more data, the sample should become more and more
representative of the whole process, and estimates should converge too.

• Our models are usually more or less mis-specified, or, in plain words,
wrong. We hardly ever get the functional form of the regression, the
distribution of the exogenous noise, the form of the causal dependence
between two factors, etc., exactly right.3 This is the origin of the bias
term in the bias-variance decomposition. Of course we can get any of the
details in the model specification more or less wrong, and we’d prefer to
be less wrong.

So, because our models are flawed, we have limited data and the world is stochas-
tic, we cannot expect even the best model to have zero error. Instead, we would
like to minimize the expected error, or risk, or generalization error, on
new data.

What we would like to do is to minimize the risk or expected loss

E [L(Z, θ)] =
∫
dzp(z)L(z, θ)

To do this, however, we’d have to be able to calculate that expectation. Doing
that would mean knowing the distribution of Z — the joint distribution ofX and
Y , for the regression problem. Since we don’t know the true joint distribution,
we need to approximate it somehow.

A natural approximation is to use our training data zn. For each possible
model θ, we can could calculate the error on the data, L(zn, θ), called the in-
sample loss or the empirical risk. The simplest strategy for estimation is
then to pick the model, the value of θ, which minimizes the in-sample loss. This
strategy is imaginatively called empirical risk minimization. Formally,

θ̂n ≡ argmin
θ∈Θ

L(zn, θ)

This means picking the regression which minimizes the sum of squared errors,
or the density with the highest likelihood4. This what you’ve usually done in
statistics courses so far, and it’s very natural, but it does have some issues,
notably optimism and over-fitting.

The problem of optimism comes from the fact that our training data isn’t
perfectly representative. The in-sample loss is a sample average. By the law of
large numbers, then, we anticipate that, for each θ,

L(zn, θ)→ E [L(Z, θ)]
3Except maybe in fundamental physics, and even there our predictions are about our

fundamental theories in the context of experimental set-ups, which we never model in complete
detail.

4Remember, maximizing the likelihood is the same as maximizing the log-likelihood, be-
cause log is an increasing function. Therefore maximizing the likelihood is the same as mini-
mizing the negative log-likelihood.

4

as n → ∞. This means that, with enough data, the in-sample error is a good
approximation to the generalization error of any given model θ. (Big samples
are representative of the underlying population or process.) But this does not
mean that the in-sample performance of θ̂ tells us how well it will generalize,
because we purposely picked it to match the training data zn. To see this, notice
that the in-sample loss equals the risk plus sampling noise:

L(zn, θ) = E [L(Z, θ)] + ηn(θ) (1)

Here η(θ) is a random term which has mean zero, and represents the effects
of having only a finite quantity of data, of size n, rather than the complete
probability distribution. (I write it ηn(θ) as a reminder that different models
are going to be affected differently by the same sampling fluctuations.) The
problem, then, is that the model which minimizes the in-sample loss could be
one with good generalization performance (E [L(Z, θ)] is small), or it could be
one which got very lucky (ηn(θ) was large and negative):

θ̂n = argmin
θ∈Θ

(E [L(Z, θ)] + ηn(θ)) (2)

We only want to minimize E [L(Z, θ)], but we can’t separate it from ηn(θ), so
we’re almost surely going to end up picking a θ̂n which was more or less lucky
(ηn < 0) as well as good (E [L(Z, θ)] small). This is the reason why picking the
model which best fits the data tends to exaggerate how well it will do in the
future.

Again, by the law of large numbers ηn(θ) → 0 for each θ, but now we need
to worry about how fast it’s going to zero, and whether that rate depends on
θ. Suppose we knew that minθ ηn(θ) → 0, or maxθ |ηn(θ)| → 0. Then it would
follow that ηn(θ̂n) → 0, and the over-optimism in using the in-sample error to
approximate the generalization error would at least be shrinking. If we knew
how fast maxθ |ηn(θ)| was going to zero, we could even say something about how
much bigger the true risk was likely to be. A lot of more advanced statistics and
machine learning theory is thus about uniform laws of large numbers (showing
maxθ |ηn(θ)| → 0) and rates of convergence.

Learning theory is a beautiful, deep, and practically important subject, but
also subtle and involved one.5 To stick closer to analyzing real data, and to
not turn this into an advanced probability class, I will only talk about some
more-or-less heuristic methods, which are good enough for many purposes.

3 Over-Fitting and Model Selection

The big problem with using the in-sample error is related to over-optimism, but
at once trickier to grasp and more important. This is the problem of over-
fitting. To illustrate it, let’s start with Figure 1. This has the twenty X values

5Some comparatively easy starting points are Kearns and Vazirani (1994) or Cristianini
and Shawe-Taylor (2000). At a more advanced level, look at the tutorial papers by Bousquet
et al. (2004); von Luxburg and Schölkopf (2008), or the textbook by Vidyasagar (2003), or
read the book by Vapnik (2000) (one of the founders), or take the class 10-702.

5

from a Gaussian distribution, and Y = 7X2 − 0.5X + ε, ε ∼ N (0, 1). That is,
the true regression curve is a parabola, with additive and independent Gaussian
noise. Let’s try fitting this — but pretend that we didn’t know that the curve
was a parabola. We’ll try fitting polynomials of different orders in x — order
0 (a flat line), order 1 (a linear regression), order 2 (quadratic regression), up
through order 9. Figure 3 shows the data with the polynomial curves, and
Figure 3 shows the in-sample mean squared error as a function of the order of
the polynomial.

Notice that the in-sample error goes down as the order of the polynomial
increases; it has to. Every polynomial of order p is also a polynomial of order
p+1, so going to a higher-order model can only reduce the in-sample error. Quite
generally, in fact, as one uses more and more complex and flexible models, the
in-sample error will get smaller and smaller.6

Things are quite different if we turn to the generalization error. In principle,
I could calculate that for any of the models, since I know the true distribution,
but it would involve calculating things like E

[
X18

]
, which won’t be very illumi-

nating. Instead, I will just draw a lot more data from the same source, twenty
thousand data points in fact, and use the error of the old models on the new
data as their generalization error. The results are in Figure 4.

What is happening here is that the higher-order polynomials — beyond order
2 — are not just a bit optimistic about how well they fit, they are wildly over-
optimistic. The models which seemed to do notably better than a quadratic
actually do much, much worse. If we picked a polynomial regression model
based on in-sample fit, we’d chose the highest-order polynomial available, and
suffer for it.

What’s going on here is that the more complicated models — the higher-
order polynomials, with more terms and parameters — were not actually fitting
the generalizable features of the data. Instead, they were fitting the sampling
noise, the accidents which don’t repeat. That is, the more complicated models
over-fit the data. In terms of our earlier notation, η is bigger for the more
flexible models. The model which does best here is the quadratic, because
the true regression function happens to be of that form. The more powerful,
more flexible, higher-order polynomials were able to get closer to the training
data, but that just meant matching the noise better. In terms of the bias-
variance decomposition, the bias shrinks with the model order, but the variance
of estimation grows.

Notice that the models of order 0 and order 1 also do worse than the
quadratic model — their problem is not over-fitting but under-fitting; they
would do better if they were more flexible. Plots of generalization error like
this usually have a minimum. If we have a choice of models — if we need to
do model selection — we would like to find the minimum. Even if we do not
have a choice of models, we might like to know how big the gap between our
in-sample error and our generalization error is likely to be.

6In fact, since there are only 20 data points, they could all be fit exactly if the order of the
polynomials went up to 19. (Remember that any two points define a line, any three points a
parabola, etc. — p + 1 points define a polynomial of order p which passes through them.)

6

-2 -1 0 1 2

0
10

20
30

40
50

x

y

plot(x,y2)
curve(7*x^2-0.5*x,add=TRUE,col="grey")

Figure 1: Scatter-plot showing sample data and the true, quadratic regression
curve (grey parabola).

7

-2 -1 0 1 2

0
10

20
30

40
50

x

y

y2.0 = lm(y2 ~ 1)
abline(h=y2.0$coefficients[1])
d = seq(-2,2,length.out=200)
for (degree in 1:9) {
fm = lm(y2 ~ poly(x,degree))
assign(paste("y2",degree,sep="."), fm)
lines(d, predict(fm,data.frame(x=d)),lty=(degree+1))

}

Figure 2: Twenty training data points (dots), and ten different fitted regression
lines (polynomials of order 0 to 9, indicated by different line types). R notes:
The poly command constructs orthogonal (uncorrelated) polynomials of the specified
degree from its first argument; regressing on them is conceptually equivalent to re-
gressing on 1, x, x2, . . . xdegree, but more numerically stable. (See help(poly).) This
use of the assign and paste functions together is helpful for storing results which
don’t fit well into arrays.

8

0 2 4 6 8

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

10
0.
0

polynomial degree

m
ea

n
sq

ua
re

d
er

ro
r

mse.q = vector(length=10)
for (degree in 0:9) {
The get() function is the inverse to assign()
fm = get(paste("y",degree,sep="."))
mse.q[degree+1] = mean(residuals(fm)^2)

}
plot(0:9,mse.q,type="b",xlab="polynomial degree",ylab="mean squared error",

log="y")

Figure 3: Degree of polynomial vs. its in-sample mean-squared error on the
data from the previous figure. Note the logarithmic scale for the vertical axis.

9

0 2 4 6 8

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

10
0.
0

polynomial degree

m
ea

n
sq

ua
re

d
er

ro
r

gmse.q = vector(length=10)
for (degree in 0:9) {
fm = get(paste("y",degree,sep="."))
predictions = predict(fm,data.frame(x=x.new))
resids = y.new - predictions
gmse.q[degree+1] = mean(resids^2)

}
plot(0:9,mse.q,type="b",xlab="polynomial degree",

ylab="mean squared error",log="y",ylim=c(min(mse.q),max(gmse.q)))
lines(0:9,gmse.q,lty=2,col="blue")
points(0:9,gmse.q,pch=24,col="blue")

Figure 4: In-sample error (black dots) compared to generalization error (blue
triangles). Note the logarithmic scale for the vertical axis.

10

There is nothing special about polynomials here. All of the same lessons
apply to variable selection in linear regression, to k-nearest neighbors (where we
need to choose k), to kernel regression (where we need to choose the bandwidth),
and to other methods we’ll see later. In every case, there is going to be a
minimum for the generalization error curve, which we’d like to find.

(A minimum with respect to what, though? In Figure 4, the horizontal axis
is the model order, which here is the number of parameters (minus one). More
generally, however, what we care about is some measure of how complex the
model space is, which is not necessarily the same thing as the number of pa-
rameters. What’s more relevant is how flexible the class of models is, how many
different functions it can approximate. Linear polynomials can approximate a
smaller set of functions than quadratics can, so the latter are more complex, or
have higher capacity. More advanced learning theory has a number of ways
of quantifying this, but the details are pretty arcane, so we will just use the
concept of complexity or capacity informally.)

4 Cross-Validation

The most straightforward way to find the generalization error would be to do
what I did above, and to use fresh, independent data from the same source — a
testing or validation data-set. Call this z′m, as opposed to our training data
zn. We fit our model to zn, and get θ̂n. The loss of this on the validation data
is

E
[
L(Z, θ̂n)

]
+ η′m(θ̂n)

where now the sampling noise on the validation set, η′m, is independent of θ̂m.
So this gives us an unbiased estimate of the generalization error, and, if m is
large, a precise one. If we need to select one model from among many, we can
pick the one which does best on the validation data, with confidence that we
are not just over-fitting.

The problem with this approach is that we absolutely, positively, cannot
use any of the validation data in estimating the model. Since collecting data is
expensive — it takes time, effort, and usually money, organization and skill —
this means getting a validation data set is expensive, and we often won’t have
that luxury.

4.1 Data-set Splitting

The next logical step, however, is to realize that we don’t strictly need a separate
validation set. We can just take our data and split it ourselves into training
and testing sets. If we divide the data into two parts at random, we ensure
that they have (as much as possible) the same distribution, and that they are
independent of each other. Then we can act just as though we had a real
validation set. Fitting to one part of the data, and evaluating on the other,
gives us an unbiased estimate of generalization error.

11

4.2 Cross-Validation (CV)

The problem with data-set splitting is that, while it’s an unbiased estimate of
the risk, it is often a very noisy one. If we split the data evenly, then the
test set has n/2 data points — we’ve cut in half the number of sample points
we’re averaging over. It would be nice if we could reduce that noise somewhat,
especially if we are going to use this for model selection.

One solution to this, which is pretty much the industry standard, is what’s
called k-fold cross-validation. Pick a small integer k, usually 5 or 10, and
divide the data at random into k equally-sized subsets. (The subsets are some-
times called “folds”.) Take the first subset and make it the test set; fit the
models to the rest of the data, and evaluate their predictions on the test set.
Now make the second subset the test set and the rest of the training sets. Repeat
until each subset has been the test set. At the end, average the performance
across test sets. This is the cross-validated estimate of generalization error for
each model. Model selection then picks the model with the smallest estimated
risk.7

The reason cross-validation works is that it uses the existing data to simulate
the process of generalizing to new data. If the full sample is large, then even
the smaller portion of it in the training data is, with high probability, fairly
representative of the data-generating process. Randomly dividing the data into
training and test sets makes it very unlikely that the division is rigged to favor
any one model class, over and above what it would do on real new data. Of
course the original data set is never perfectly representative of the full data,
and a smaller testing set is even less representative, so this isn’t ideal, but the
approximation is often quite good.

Cross-validation is probably the most widely-used method for model selec-
tion, and for picking control settings, in modern statistics. There are circum-
stances where it can fail — especially if you give it too many models to pick
among — but it’s the first thought of seasoned practitioners, and it should be
your first thought, too. The homework to come will make you very familiar with
it.

4.3 Leave-one-out Cross-Validation

Suppose we did k-fold cross-validation, but with k = n. Our testing sets would
then consist of single points, and each point would be used in testing once.
This is called leave-one-out cross-validation. It actually came before k-fold
cross-validation, and has two advantages. First, it doesn’t require any random
number generation, or keeping track of which data point is in which subset.
Second, and more importantly, because we are only testing on one data point,
it’s often possible to find what the prediction on the left-out point would be by

7A closely related procedure, sometimes also called “k-fold CV”, is to pick 1/k of the
data points at random to be the test set (using the rest as a training set), and then pick an
independent 1/k of the data points as the test set, etc., repeating k times and averaging. The
differences are subtle, but what’s described in the main text makes sure that each point is
used in the test set just once.

12

doing calculations on a model fit to the whole data. This means that we only
have to fit each model once, rather than k times, which can be a big savings of
computing time.

The drawback to leave-one-out CV is subtle but often decisive. Since each
training set has n−1 points, any two training sets must share n−2 points. The
models fit to those training sets tend to be strongly correlated with each other.
Even though we are averaging n out-of-sample forecasts, those are correlated
forecasts, so we are not really averaging away all that much noise. With k-fold
CV, on the other hand, the fraction of data shared between any two training
sets is just k−2

k−1 , not n−2
n−1 , so even though the number of terms being averaged

is smaller, they are less correlated.
There are situations where this issue doesn’t really matter, or where it’s

overwhelmed by leave-one-out’s advantages in speed and simplicity, so there is
certainly still a place for it, but one subordinate to k-fold CV.

5 Warnings

Some caveats are in order.

1. All the model selection methods we have discussed aim at getting models
which predict well. This is not necessarily the same as getting the true
theory of the world. Presumably the true theory will also predict well,
but the converse does not necessarily follow. We will see examples later
where false but low-capacity models, because they have such low variance
of estimation, actually out-predict correctly specified models.

2. All of these model selection methods aim at getting models which will
generalize well to new data, if it follows the same distribution as old data.
Generalizing well even when distributions change is a much harder and
much less well-understood problem (Quiñonero-Candela et al., 2009). It
is particularly troublesome for a lot of applications involving large num-
bers of human beings, because society keeps changing all the time — it’s
natural for the variables to vary, but the relationships between variables
also changes. (That’s history.)

6 Exercises

To think through, not to hand in.

1. Suppose that one of our model classes contains the true and correct model,
but we also consider more complicated and flexible model classes. Does
the bias-variance trade-off mean that we will over-shoot the true model,
and always go for something more flexible, when we have enough data?
(This would mean there was such a thing as too much data to be reliable.)

13

References

Bousquet, Olivier, Stéphane Boucheron and Gábor Lugosi (2004). “Introduction
to Statistical Learning Theory.” In Advanced Lectures in Machine Learning
(Olivier Bousquet and Ulrike von Luxburg and Gunnar Rätsch, eds.), pp. 169–
207. Berlin: Springer-Verlag. URL http://www.econ.upf.edu/~lugosi/
mlss_slt.pdf.

Cristianini, Nello and John Shawe-Taylor (2000). An Introduction to Support
Vector Machines: And Other Kernel-Based Learning Methods. Cambridge,
England: Cambridge University Press.

Kearns, Michael J. and Umesh V. Vazirani (1994). An Introduction to Compu-
tational Learning Theory . Cambridge, Massachusetts: MIT Press.

Quiñonero-Candela, Joaquin, Masashi Sugiyama, Anton Schwaighofer and
Neil D. Lawrence (eds.) (2009). Dataset Shift in Machine Learning . Cam-
bridge, Massachusetts: MIT Press.

Vapnik, Vladimir N. (2000). The Nature of Statistical Learning Theory . Berlin:
Springer-Verlag, 2nd edn.

Vidyasagar, M. (2003). Learning and Generalization: With Applications to
Neural Networks. Berlin: Springer-Verlag, 2nd edn.

von Luxburg, Ulrike and Bernhard Schölkopf (2008). “Statistical Learning
Theory: Models, Concepts, and Results.” E-print, arxiv.org. URL http:
//arxiv.org/abs/0810.4752.

14

http://www.econ.upf.edu/~lugosi/mlss_slt.pdf
http://www.econ.upf.edu/~lugosi/mlss_slt.pdf
http://arxiv.org/abs/0810.4752
http://arxiv.org/abs/0810.4752

	What Are Statistical Models For? Summaries, Forecasts, Simulators
	Errors, In and Out of Sample
	Over-Fitting and Model Selection
	Cross-Validation
	Data-set Splitting
	Cross-Validation (CV)
	Leave-one-out Cross-Validation

	Warnings
	Exercises

