
Using Nonparametric Smoothing in Regression

36-402, Data Analysis

20 January 2011

Contents

1 How Much Should We Smooth? 1

2 Adapting to Unknown Roughness 2

3 Kernel Regression with Multiple Inputs 15

4 Interpreting Smoothers: Plots 20

A The Multivariate Gaussian Distribution 22
We are still talking about using smoothing methods in regression.
Recall the basic kind of smoothing we are interested in: we have a response

variable Y , some input variables which we bind up into a vector X, and a
collection of data values, (x1, y1), (x2, y2), . . . xn, yn). By “smoothing”, I mean
that predictions are going to be weighted averages of the observed responses in
the training data:

r̂(x) =
n∑
i=1

yiw(x, xi, h) (1)

Most smoothing methods have a control setting, which here I write h, that
determines how much smoothing we do. With k nearest neighbors, for instance,
the weights are 1/k if xi is one of the k-nearest points to x, and w = 0 otherwise,
so large k means that each prediction is an average over many training points.
Similarly with kernel regression, where the degree of smoothing is controlled by
the bandwidth h.

Why do we want to do this? How do we pick how much smoothing to do?

1 How Much Should We Smooth?

When we smooth very little (h → 0), then we can match very small or sharp
aspects of the true regression function, if there are such. Smoothing less leads
to less bias. At the same time, each of our predictions is going to be an average

1

over (in effect) just a few observations, so it becomes noisier. So smoothing less
increases the variance of our estimate. Since

(totalerror) = (noise) + (bias)2 + (variance)

(see lecture 1, section 4.1), if we plot the different components of error as a
function of h, we typically get something that looks like Figure 1. Because
changing the amount of smoothing has opposite effects on the bias and the
variance, there is an optimal amount of smoothing, where we can’t reduce one
source of error without increasing the other. We therefore want to find that
optimal amount of smoothing, which is where (as explained last time) cross-
validation comes in.

You should note, at this point, that the optimal amount of smoothing de-
pends on (1) the real regression curve, (2) our smoothing method, and (3) how
much data we have. This is because the variance contribution generally shrinks
as we get more data.1 If we get more data, we go from Figure 1 to Figure 2.
The minimum of the over-all error curve has shifted to the left, and we should
smooth less.

Strictly speaking, parameters are properties of the data-generating process
alone, so the optimal amount of smoothing is not really a parameter. If you
do think of it as a parameter, you have the problem of why the “true” value
changes as you get more data. It’s better thought of as a setting or control
variable in the smoothing method, to be adjusted as convenient.

2 Adapting to Unknown Roughness

Consider Figure 3, which graphs two functions, f and g. Both are “smooth”
functions in the qualitative, mathematical sense (C∞: they’re not only con-
tinuous, their derivatives exist and are continuous to all orders). We could
Taylor expand both functions to approximate their values anywhere, just from
knowing enough derivatives at one point x0.2 Alternately, if instead of know-
ing the derivatives at x0, we have the values of the functions at a sequence of
points x1, x2, . . . xn, we could use interpolation to fill out the rest of the curve.
Quantitatively, however, f(x) is less smooth than g(x) — it changes much more
rapidly, with many reversals of direction. For the same degree of inaccuracy in
the interpolation f(·) needs more, and more closely spaced, training points xi
than goes g(·).

Now suppose that we don’t get to actually get to see f(x) and g(x), but
rather just f(x) + ε and g(x) + η, where ε and η are noise. (To keep things
simple I’ll assume they’re the usual mean-zero, constant-variance, IID Gaussian
noises, say with σ = 0.15.) The data now look something like Figure 4. Can we
now recover the curves?

If we had multiple measurements at the same x, then we could recover the
expectation value by averaging: since the regression curve r(x) = E [Y |X = x],

1Sometimes bias changes as well. Noise does not (why?).
2Technically, a function whose Taylor series converges everywhere is analytic.

2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Smoothing

G
en

er
al

iz
at

io
n

er
ro

r

Figure 1: Over-all generalization error for different amounts of smoothing (solid
curve) decomposed into intrinsic noise (dotted line), approximation error in-
troduced by smoothing (=squared bias; dashed curve), and estimation vari-
ance (dot-and-dash curve). The numerical values here are arbitrary, but the
functional forms (squared bias ∝ h4, variance ∝ n−1h−1) are representative of
typical results for non-parametric smoothing.

3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Smoothing

G
en

er
al

iz
at

io
n

er
ro

r

Figure 2: Consequences of adding more data to the components of error: noise
(dotted) and bias (dashed) are unchanged, but the new variance curve (dotted
and dashed, black) is to the left of the old (greyed), so the new over-all er-
ror curve (solid black) is lower, and has its minimum at a smaller amount of
smoothing than the old (solid grey).

4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

0.
0

0.
5

1.
0

x

f(x
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
4

0.
8

1.
2

x

g(
x)

par(mfcol=c(2,1))
curve(sin(x)*cos(20*x),from=0,to=3,xlab="x",ylab=expression(f(x)))
curve(log(x+1),from=0,to=3,xlab="x",ylab=expression(g(x)))

Figure 3: Two curves for the running example. Above, f(x); below, g(x). (As
it happens, f(x) = sinx cos 20x, and g(x) = log x+ 1, but that doesn’t really
matter.)

5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

0.
0

1.
0

x

f(x
)+

ε

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

g(
x)
+
η

x = runif(300,0,3)
yf = sin(x)*cos(20*x)+rnorm(length(x),0,0.15)
yg = log(x+1)+rnorm(length(x),0,0.15)
par(mfcol=c(2,1))
plot(x,yf,xlab="x",ylab=expression(f(x)+epsilon))
curve(sin(x)*cos(20*x),col="grey",add=TRUE)
plot(x,yg,xlab="x",ylab=expression(g(x)+eta))
curve(log(x+1),col="grey",add=TRUE)

Figure 4: The same two curves as before, but corrupted by IID Gaussian noise
with mean zero and standard deviation 0.15. (The x values are the same, but
there are different noise realizations for the two curves.) The light grey line
shows the noiseless curves.

6

if we had many observations at the same xi, the average of the corresponding
yi would (by the law of large numbers) converge on r(x). Generally, however,
we have at most one measurement per value of x, so simple averaging won’t
work. Even if we just confine ourselves to the xi where we have observations,
the mean-squared error will always be σ2, the noise variance. However, our
estimate will be unbiased.

What smoothing methods try to use is that we may have multiple measure-
ments at points xi which are near the point of interest x. If the regression
function is smooth, as we’re assuming it is, r(xi) will be close to r(x). Re-
member that the mean-squared error is the sum of bias (squared) and variance.
Averaging values at xi 6= x is going to introduce bias, but averaging many in-
dependent terms together also reduces variance. If by smoothing we get rid of
more variance than we gain bias, we come out ahead.

Here’s a little math to see it. Let’s assume that we can do a first-order
Taylor expansion, so

r(xi) ≈ r(x) + (xi − x)r′(x) (2)

and
yi ≈ r(x) + (xi − x)r′(x) + εi (3)

Now we average: to keep the notation simple, abbreviate the weight w(xi, x, h)
by just wi.

r̂(x) =
1
n

n∑
i=1

yiwi

=
1
n

n∑
i=1

(r(x) + (xi − x)r′(x) + εi)wi

= r(x) +
n∑
i=1

wiεi +
n∑
i=1

wi(xi − x)r′(x)

r̂(x)− r(x) =
n∑
i=1

wiεi +
n∑
i=1

wi(xi − x)r′(x)

E
[
(r̂(x)− r(x))2

]
= σ2

n∑
i=1

w2
i + E

(n∑
i=1

wi(xi − x)r′(x)

)2

(Remember that:
∑
wi = 1, that E [εi] = 0, that the noise is uncorrelated with

everything, and that E [εi] = σ2.)
The first term on the final right-hand side is variance, which will tend to

shrink as n grows. (If wi = 1/n, the unweighted averaging case, we get back the
familiar σ2/n.) The second term, on the other hand, is bias, which grows with
how far the xi are from x, and the magnitude of the derivative, i.e., how smooth
or wiggly the regression function is. For this to work, wi had better shrink as
xi − x and r′(x) grow.3 Finally, all else being equal, wi should also shrink with

3The higher derivatives of r also matter, since we should really be keeping more than just
the first term in the Taylor expansion, but you get the idea.

7

n, so that the over-all size of the sum shrinks as we get more data.
To illustrate, let’s try to estimate f(1.6) and g(1.6) from the noisy observa-

tions. We’ll try a simple approach, just averaging all values of f(xi) + εi and
g(xi) + ηi for 1.5 < xi < 1.7 with equal weights. For f , this gives 0.46, while
f(1.6) = 0.89. For g, this gives 0.98, with g(1.6) = 0.95. (See figure 5). The
same size window introduces a much larger bias with the rougher, more rapidly
changing f than with the smoother, more slowly changing g. Varying the size
of the averaging window will change the amount of error, and it will change it
in different ways for the two functions.

If we look at the expression for the mean-squared error of the smoother,
we can see that it’s quadratic in the weights wi. However, once we pick the
smoother and take our data, the weights wi are all functions of h, the control
setting which determines the degree of smoothing. So in principle there will be
an optimal choice of h. We can find this through calculus — take the derivative
of the MSE with respect to h (via the chain rule) and set it equal to zero — but
the expression for the optimal h involves the derivative r′(x) of the regression
function. Of course, if we knew the derivative of the regression function, we
would basically know the function itself (just integrate), so we seem to be in a
vicious circle, where we need to know the function before we can learn it.

One way of expressing this is to talk about how well a smoothing procedure
would work, if an Oracle were to tell us the derivative, or (to cut to the chase)
the optimal bandwidth hopt. Since most of us do not have access to such oracles,
we need to estimate hopt. Once we have this estimate, ĥ, then we get out weights
and our predictions, and so a certain mean-squared error. Basically, our MSE
will be the Oracle’s MSE, plus an extra term which depends on how far ĥ is to
hopt, and how sensitive the smoother is to the choice of bandwidth.

What would be really nice would be an adaptive procedure, one where our
actual MSE, using ĥ, approaches the Oracle’s MSE, which it gets from hopt.
This would mean that, in effect, we are figuring out how rough the underlying
regression function is, and so how much smoothing to do, rather than having
to guess or be told. An adaptive procedure, if we can find one, is a partial4

substitute for prior knowledge.
The most straight-forward way to pick a bandwidth, and one which generally

manages to be adaptive, is in fact cross-validation; k-fold CV is usually some-
what better than leave-one-out, but the latter often works acceptably too. The
random-division CV would work in the usual way, going over a grid of possible
bandwidths. Here is how it would work with the input variable being in the
vector x (one dimensional) and the response in the vector y (one dimensional),
and using the npreg function from the np library (?).5

The return value has three parts. The first is the actual best bandwidth.
The second is a vector which gives the cross-validated mean-squared mean-
squared errors of all the different bandwidths in the vector bandwidths. The

4Only partial, because we’d always do better if the Oracle would just tell us hopt.
5The np package actually has a function, npregbw, which automatically selects bandwidths

through a sophisticated combination of cross-validation and optimization techniques. It tends
to be very slow.

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

0.
0

1.
0

x

f(x
)+

ε *

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

g(
x)
+
η

*

par(mfcol=c(2,1))
colors=ifelse((x<1.7)&(x>1.5),"black","grey")
plot(x,yf,xlab="x",ylab=expression(f(x)+epsilon),col=colors)
curve(sin(x)*cos(20*x),col="grey",add=TRUE)
points(1.6,mean(yf[(x<1.7)&(x>1.5)]),pch="*",cex=2)
plot(x,yg,xlab="x",ylab=expression(g(x)+eta),col=colors)
curve(log(x+1),col="grey",add=TRUE)
points(1.6,mean(yg[(x<1.7)&(x>1.5)]),pch="*",cex=2)

Figure 5: Relationship between smoothing and function roughness. In both
the upper and lower panel we are trying to estimate the value of the regression
function at x = 1.6 from averaging observations taken with 1.5 < xi < 1.7
(black points, others are “ghosted” in grey). The location of the average in
shown by the large black X. Averaging over this window works poorly for the
rough function f(x) in the upper panel (the bias is large), but much better for
the smoother function in the lower panel (the bias is small).

9

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Radius of averaging window

A
bs

ol
ut

e
va

lu
e

of
 e

rr
or

loc_ave_err <- function(h,y,y0) {abs(y0-mean(y[(1.6-h < x) & (1.6+h>x)]))}
yf0=sin(1.6)*cos(20*1.6)
yg0=log(1+1.6)
f.LAE = sapply(0:100/100,loc_ave_err,y=yf,y0=yf0)
g.LAE = sapply(0:100/100,loc_ave_err,y=yg,y0=yg0)
plot(0:100/100,f.LAE,xlab="Radius of averaging window",

ylab="Absolute value of error",type="l")
lines(0:100/100,g.LAE,lty=2)
abline(h=0.15,col="grey")

Figure 6: Estimating f(1.6) and g(1.6) from averaging observed values at 1.6−
h < x < 1.6 + h, for different radii h. Solid line: error of estimates of f(1.6);
dashed line: error of estimates of g(1.6); grey line: σ, the standard deviation of
the noise.

10

Multi-fold cross-validation for univariate kernel regression
cv_bws_npreg <- function(x,y,bandwidths=(1:50)/50,num.folds=10) {
require(np)
n <- length(x)
stopifnot(n> 1, length(y) == n)
stopifnot(length(bandwidths) > 1)
stopifnot(num.folds > 0, num.folds==trunc(num.folds))

fold_MSEs <- matrix(0,nrow=num.folds,ncol=length(bandwidths))
colnames(fold_MSEs) = bandwidths

case.folds <- rep(1:num.folds,length.out=n)
case.folds <- sample(case.folds)
for (fold in 1:num.folds) {
train.rows = which(case.folds==fold)
x.train = x[train.rows]
y.train = y[train.rows]
x.test = x[-train.rows]
y.test = y[-train.rows]
for (bw in bandwidths) {
fit <- npreg(txdat=x.train,tydat=y.train,

exdat=x.test,eydat=y.test,bws=bw)
fold_MSEs[fold,paste(bw)] <- fit$MSE

}
}
CV_MSEs = colMeans(fold_MSEs)
best.bw = bandwidths[which.min(CV_MSEs)]
return(list(best.bw=best.bw,CV_MSEs=CV_MSEs,fold_MSEs=fold_MSEs))

}

Code Example 1: Comments omitted here to save space; see the accompany-
ing R file on the class website. The colnames trick: component names have to
be character strings; other data types will be coerced into characters when we
assign them to be names. Later, when we want to refer to a bandwidth column
by its name, we wrap the name in another coercing function, such as paste.
— The default vector of default bandwidths is pretty arbitrary; one could do
better.

11

third component is an array which gives the MSE for each bandwidth on each
fold. It can be useful to know things like whether the difference between the CV
score of the best bandwidth and the runner-up is bigger than their fold-to-fold
variability.

Figure 7 plots the CV estimate of the (root) mean-squared error versus
bandwidth for our two curves. Figure 8 shows the data, the actual regression
functions and the estimated curves with the CV-selected bandwidths.

12

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Bandwidth

R
oo

t C
V

 M
S

E

fbws <- cv_bws_npreg(x,yf,bandwidths=(1:100)/200)
gbws <- cv_bws_npreg(x,yg,bandwidths=(1:100)/200)
plot(1:100/200,sqrt(fbws$CV_MSEs),xlab="Bandwidth",ylab="Root CV MSE",

type="l",ylim=c(0,0.6))
lines(1:100/200,sqrt(gbws$CV_MSEs),lty=2)
abline(h=0.15,col="grey")

Figure 7: Cross-validated estimate of the (root) mean-squard error as a function
of the bandwidth. Solid curve: data from f(x); dashed curve: data from g(x);
grey line: true σ. Notice that the rougher curve is more sensitive to the choice
of bandwidth, and that the smoother curve is more predictable at every choice
of bandwidth. Also notice that CV does not completely compensate for the
optimism of in-sample fitting (see where the dashed curve falls below the grey
line). CV selects bandwidths of 0.015 for f and 0.165 for g.

13

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

0.
0

1.
0

x

f(x
)+

ε

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

g(
x)
+
η

x.ord=order(x)

par(mfcol=c(2,1))

plot(x,yf,xlab="x",ylab=expression(f(x)+epsilon))

lines(x[x.ord],fitted(npreg(bws=fbws$best.bw,txdat=x,tydat=yf))[x.ord],lwd=4)

curve(sin(x)*cos(20*x),col="grey",add=TRUE,lwd=2)

plot(x,yg,xlab="x",ylab=expression(g(x)+eta))

lines(x[x.ord],fitted(npreg(bws=fbws$best.bw,txdat=x,tydat=yg))[x.ord],lwd=4)

curve(log(x+1),col="grey",add=TRUE,lwd=2)

Figure 8: Data from the running examples (circles), true regression functions
(grey) and kernel estimates of regression functions with CV-selected bandwidths
(black). The widths of the regression functions are exaggerated. Since the x
values aren’t sorted, we need to put them in order if we want to draw lines
connecting the fitted values; then we need to put the fitted values in the same
order. An alternative would be to use predict on the sorted values, as in the
next section.

14

3 Kernel Regression with Multiple Inputs

For the most part, when I’ve been writing out kernel regression I have been
treating the input variable x as a scalar. There’s no reason to insist on this,
however; it could equally well be a vector. If we want to enforce that in the
notation, say by writing ~x = (x1, x2, . . . xd), then the kernel regression of y on
~x would just be

r̂(~x) =
n∑
i=1

yi
K(~x− ~xi)∑n
j=1K(~x− ~xj)

In fact, if we want to predict a vector, we’d just substitute ~yi for yi above.
To make this work, we need kernel functions for vectors. For scalars, I said

that any probability density function would work so long as it had mean zero,
and a finite, strictly positive (not 0 or ∞) variance. The same conditions carry
over: any distribution over vectors can be used as a multivariate kernel, provided
it has mean zero, and the variance matrix is finite and strictly positive6. This
leads to two popular choices: multivariate Gaussians (see the appendix), and
product kernels.

Using the multivariate Gaussian, one would set the mean vector ~µ = 0, but
one would still need to set the covariance matrix Σ. The diagonal elements of Σ
are variances, so picking them corresponds to picking bandwidths, but the off-
diagonal parts, the covariances, correspond to guesses about how combinations
of variables should trade off against each other. If the kernel was the Gaussian
shown in Figure 13, and the two points marked + were two values of ~xi, we would
give more weight to the point to the right of the center than the one above it,
because of the direction of the displacement, even though the geometric distance
is equal. This can be a powerful tool, if we know how to set it the covariance,
but it is often hard to do well.

It is more common to use product kernels, which is to say to use a different
kernel for each component, and take their product:

K(~x− ~xi) = K1(x1 − x1
i)K2(x2 − x2

i) . . .Kd(xd − xdi)

Now we just need to pick a bandwidth for each kernel, which in general should
not be equal — say ~h = (h1, h2, . . . hd). Now instead of having a one-dimensional
error curve, as in Figure 1 or 1, we will have a d-dimensional error surface, but
we can still use cross-validation to find the vector of bandwidths that generalizes
best. We generally can’t, unfortunately, break the problem up into somehow
picking the best bandwidth for each variable without considering the others.
This makes it slower to select good bandwidths in multivariate problems, but
still often feasible.

(We can actually turn the need to select bandwidths together to our ad-
vantage. If one or more of the variables are irrelevant to our prediction given

6Remember that for a matrix v to be “strictly positive”, it must be the case that for any
vector ~a, ~a · v~a > 0. Covariance matrices are automatically non-negative, so we’re just ruling
out the case of some weird direction along which the distribution has zero variance.

15

the others, cross-validation will tend to give them the maximum possible band-
width, and smooth away their influence. We will look, later, at formal tests
based on this idea.)

Whether we use product kernels or some multivariate distribution including
correlations, kernel regression will recover almost any regression function. This
is true even when the true regression function involves lots of interactions among
the input variables, perhaps in complicated forms that would be very hard to
express in linear regression. For instance, Figure 9 shows a contour plot of a
reasonably complicated regression surface, at least if one were to write it as
polynomials in x1 and x2, which would be the usual approach. Figure 11 shows
the estimate we get with a product of Gaussian kernels and only 1000 noisy
data points. It’s not perfect, of course (in particular the estimated contours
aren’t as perfectly smooth and round as the true ones), but the important thing
is that we got this without having to know, and describe in analytic geometry,
the type of shape we were looking for. Kernel smoothing discovered the right
general form.

16

-3
-2

-1
0

1
2

3

-3

-2

-1

0

1
2

3

0.2

0.4

0.6

0.8

x1
x2

y

x.points <- seq(-3,3,length.out=100)
y.points <- x.points
xygrid <- expand.grid(x=x.points,y=y.points)
z <- matrix(0,nrow=100,ncol=100)
for (i in 1:100) {
for (j in 1:100) {

z[i,j] <- f(x.points[i],y.points[j])
}

}
library(lattice)
wireframe(z~xygrid$x*xygrid$y,scales=list(arrows=FALSE),xlab=expression(x^1),

ylab=expression(x^2),zlab="y")

Figure 9: An example of a regression surface that would be very hard to learn
by piling together interaction terms in a linear regression framework. (Can
you guess what the function f is?) — wireframe is from the graphics library
lattice.

17

-2
-1

0
1

2

-2

-1

0

1
2

0.0

0.2

0.4

0.6

0.8

1.0

x1
x2

y

x.noise <- runif(1000,min=-3,max=3)
y.noise <- runif(1000,min=-3,max=3)
z.noise <- f(x.noise,y.noise)+rnorm(1000,0,0.05)
noise <- data.frame(z=z.noise,x=x.noise,y=y.noise)
cloud(z~x*y,data=noise,col="black",scales=list(arrows=FALSE),

xlab=expression(x^1),ylab=expression(x^2),zlab="y")

Figure 10: 1000 data points, randomly sampled from the surface in Figure 9,
plus independent Gaussian noise (s.d. = 0.05).

18

-3
-2

-1
0

1
2

3

-3

-2

-1

0

1
2

3

0.0

0.2

0.4

0.6

0.8

x1
x2

y

noise.np <- npreg(z~x+y,data=noise)
z.out <- matrix(0,100,100)
for (i in 1:100) {
for (j in 1:100) {
z.out[i,j] <- predict(noise.np,newdata=data.frame(x=x.points[i],

y=y.points[j]))
}

}
wireframe(z.out~xygrid$x*xygrid$y,scales=list(arrows=FALSE),

xlab=expression(x^1),ylab=expression(x^2),zlab="y")

Figure 11: Gaussian kernel regression of the points in Figure 10. Notice that
the estimated function will make predictions are arbitrary points, not just the
places where there was training data.

19

4 Interpreting Smoothers: Plots

In a linear regression without interactions, it is fairly easy to interpret the
coefficients. The expected response changes by βi for a one-unit change in
the ith input variable. The coefficients are also the derivatives of the expected
response with respect to the inputs. And it is easy to draw pictures of how
the output changes as the inputs are varied, though the pictures are somewhat
boring (straight lines or planes).

As soon as we introduce interactions, all this becomes harder, even for para-
metric regression. If there is an interaction between two components of the
input, say x1 and x2, then we can’t talk about the change in the expected re-
sponse for a one-unit change in x1 without saying what x2 is. We might average
over x2 values, and we’ll see next time a reasonable way of doing this, but the
flat statement “increasing x1 by one unit increases the response by β1” is just
false, no matter what number we fill in for β1. Likewise for derivatives; we’ll
come back to them next time as well.

What about pictures? If there are only two input variables, then we can
make plots like the wireframes in the previous section, or contour- or level-
plots, which will show the predictions for different combinations of the two
variables. But suppose we want to look at one variable at a time? Suppose
there are more than two input variables?

A reasonable way of producing a curve for each input variable is to set all
the others to some “typical” value, such as the mean or the median, and to
then plot the predicted response as a function of the one remaining variable
of interest. See Figure 12 for an example of this. Of course, when there are
interactions, changing the values of the other inputs will change the response
to the input of interest, so it may be a good idea to produce a couple of curves,
possibly super-imposed (again, see Figure 12).

If there are three or more input variables, we can look at the interactions
of any two of them, taken together, by fixing the others and making three-
dimensional or contour plots, along the same principles.

The fact that smoothers don’t give us a simple story about how each input
is associated with the response may seem like a disadvantage compared to using
linear regression. Whether it really is a disadvantage depends on whether there
really is a simple story to be told — and, if there isn’t, how big a lie you are
prepared to tell in order to keep your story simple.

20

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

y

new.frame <- data.frame(x=seq(-3,3,length.out=300),y=median(y.noise))
plot(new.frame$x,predict(noise.np,newdata=new.frame),type="l",xlab=expression(x^1),ylab="y",ylim=c(0,1.0))
new.frame$y <- quantile(y.noise,0.25)
lines(new.frame$x,predict(noise.np,newdata=new.frame),lty=2)
new.frame$y <- quantile(y.noise,0.75)
lines(new.frame$x,predict(noise.np,newdata=new.frame),lty=3)

Figure 12: Predicted mean response as function of the first input coordinate x1

for the example data, evaluated with the second coordinate x2 set to the median
(solid), its 25th percentile (dashed) and its 75th percentile (dotted). Note that
the changing shape of the partial response curve indicates an interaction between
the two inputs. Also, note that the model is able to make predictions at arbitrary
coordinates, whether or not there were any training points there. (It happened
that no observation was exactly at the median, the 25th or the 75th percentile
for the second input.)

21

A The Multivariate Gaussian Distribution

The multivariate Gaussian is just the generalization of the ordinary Gaussian
to vectors. Scalar Gaussians are parameterized by a mean µ and a variance σ2,
which we symbolize by writing X ∼ N (µ, σ2). Multivariate Gaussians, likewise,
are parameterized by a mean vector ~µ, and a variance-covariance matrix Σ,
written ~X ∼MVN (~µ,Σ). The components of ~µ are the means of the different
components of ~X. The i, jth component of Σ is the covariance between Xi and
Xj (so the diagonal of Σ gives the component variances).

Just as the probability density of scalar Gaussian is

p(x) =
(
2πσ2

)−1/2
exp

{
−1

2
(x− µ)2

σ2

}
the probability density of the multivariate Gaussian is

p(~x) = (2π det Σ)−d/2 exp
{
−1

2
(~x− ~µ) ·Σ−1(~x− ~µ)

}
Finally, remember that the parameters of a Gaussian change along with linear
transformations

X ∼ N (µ, σ2)⇔ aX + b ∼ N (aµ+ b, a2σ2)

and we can use this to “standardize” any Gaussian to having mean 0 and vari-
ance 1 (by looking at X−µ

σ). Likewise, if

~X ∼MVN (~µ,Σ)

then
a ~X +~b ∼MVN (a~µ+~b,aΣaT)

In fact, the analogy between the ordinary and the multivariate Gaussian is so
complete that it is very common to not really distinguish the two, and write N
for both.

The multivariate Gaussian density is most easily visualized when d = 2,
as in Figure 13. The probability contours are ellipses. The density changes
comparatively slowly along the major axis, and quickly along the minor axis.
The two points marked + in the figure have equal geometric distance from ~µ,
but the one to its right lies on a higher probability contour, because of the
direction of the separation.

For future reference, note that the axes of the probability-contour ellipses
would be parallel to the coordinate axes if and only if the components of the
vector were uncorrelated, and Σ was a diagonal matrix. We will see later that
the axes of the ellipses correspond to the eigenvectors of Σ, and the radii are
proportional to the eigenvalues. (This is not obvious.)

22

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

+

+

library(mvtnorm)
x.points <- seq(-3,3,length.out=100)
y.points <- x.points
z <- matrix(0,nrow=100,ncol=100)
mu <- c(1,1)
sigma <- matrix(c(2,1,1,1),nrow=2)
for (i in 1:100) {
for (j in 1:100) {

z[i,j] <- dmvnorm(c(x.points[i],y.points[j]),mean=mu,sigma=sigma)
}

}
contour(x.points,y.points,z)

Figure 13: Probability density contours for a two-dimensional multivariate

Gaussian, with mean ~µ =
(

1
1

)
(solid dot), and variance matrix Σ =(

2 1
1 1

)
.

23

	How Much Should We Smooth?
	Adapting to Unknown Roughness
	Kernel Regression with Multiple Inputs
	Interpreting Smoothers: Plots
	The Multivariate Gaussian Distribution

