
Moving Beyond Conditional Expectations:

Predictive Comparisons, Weighted Least Squares,

Heteroskedasticity, Local Polynomial Regression

36-402, Advanced Data Analysis

25 January 2011

Contents

1 Average Predictive Comparisons 2

2 Weighted Least Squares 4

3 Heteroskedasticity 6
3.1 Weighted Least Squares as a Solution to Heteroskedasticity . . . 8
3.2 Some Explanations for Weighted Least Squares 8
3.3 Finding the Variance and Weights 12

4 Variance Function Estimation 13
4.1 Iterative Refinement of Mean and Variance: An Example 14

5 Local Linear Regression 19
5.1 Advantages and Disadvantages of Locally Linear Regression . . . 20
5.2 Lowess . 23

6 Exercises 24

A Proof of the Gauss-Markov Theorem 25
In these notes, we will start to move beyond just looking at conditional

expectations, as we have been doing with regression, to also take into account
other aspects of the distribution, mostly conditional variance. We begin by
looking at comparing predictions from different points of the input space (which
could have gone in the last lecture). Then we look at weighted least squares,
and the effect that ignoring heteroskedasticity can have. This leads naturally to
trying to estimate variance functions, on the one hand, and generalizing kernel
regression to local polynomial regression, on the other.

1

1 Average Predictive Comparisons

Suppose we have a linear regression model

Y = β1X
1 + β2X

2 + ε (1)

and we want to know how much Y changes, on average, for a one-unit increase
in X1. The answer, as you know very well, is just β1:

[β1(X1 + 1) + β2X
2]− [β1X

1 + β2X
2] = β1 (2)

This is an interpretation of the regression coefficients which you are very used
to giving. But it fails as soon as we have interactions:

Y = β1X
1 + β2X

2 + β3X
1X2 + ε (3)

Now the effect of increasing X1 by 1 is

[β1(X1+1)+β2X
2+β3(X1+1)X2]−[β1X

1+β2X
2+β3X

1X2] = β1+β3X
2 (4)

There just isn’t one answer “how much does the response change when X1 is
increased by one unit?”, it depends on the value of X2. We certainly can’t just
answer with β1.

We also can’t give just a single answer if there are nonlinearities. Suppose
that the true regression function is this:

Y =
eβX

1 + eβX
+ ε (5)

which looks like Figure 1, setting β = 7 (for luck). Moving x from −4 to −3
increases the response by 7.57 × 10−10, but the increase in the response from
x = −1 to x = 0 is 0.499. Functions like this are very common in psychol-
ogy, medicine (dose-response curves for drugs), biology, etc., and yet we cannot
sensibly talk about the response to a one-unit increase in x.

More generally, let’s say we are regressing Y on a vector ~X, and want to
assess the impact of one component of the input on Y . To keep the use of
subscripts and superscripts to a minimum, we’ll write ~X = (u, ~V), where u
is the coordinate we’re really interested in. (It doesn’t have to come first, of
course.) We would like to know how much the prediction changes as we change
u,

EY | ~X = (u(2), ~v)− EY | ~X = (u(1), ~v) (6)

and the change in the response per unit change in u,

EY | ~X = (u(2), ~v)− EY | ~X = (u(1), ~v)
u(2) − u(1)

(7)

Both of these, but especially the latter, are called the predictive comparison.
Note that both of them, as written, depend on u(1) (the starting value for the

2

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

curve(exp(7*x)/(1+exp(7*x)),from=-5,to=5,ylab="y")

Figure 1: The function of Eq. 5, with β = 7.

variable of interest), on u(2) (the ending value), and on ~v (the other variables,
held fixed during this comparison). We have just seen that in a linear model
without interactions, u(1), u(2) and ~v all go away and leave us with the regression
coefficient on u. In nonlinear or interacting models, we can’t simplify so much.

Once we have estimated a regression model, we can chose our starting point,
ending point and context, and just plug in to Eq. 6 or Eq. 7. (Take a look again
at problem 6 on Homework 2.) But suppose we do want to boil this down into
a single number for each input variable — how might we go about this?

One good answer, which comes from Gelman and Pardoe (2007), is just to
average 7 over the data1 More specifically, we have as our average predictive
comparison for u∑n

i=1

∑n
j=1 r̂(uj , ~vi)− r̂(ui, ~vj)sign(uj − ui)

(uj − ui)sign(uj − ui)
(8)

where i and j run over data points, r̂ is our estimated regression function, and
the sign function is defined by sign(x) = +1 if x > 0, = 0 if x = 0, and = −1 if
x < 0. We use the sign function this way to make sure we are always looking
at the consequences of increasing u.

1Actually, they propose something very slightly more complicated, which takes into account
the uncertainty in our estimate of the regression function. We’ll come back to this in a few
lectures when we see how to quantify uncertainty in complex models.

3

2 Weighted Least Squares

When we use ordinary least squares to estimate linear regression, we (naturally)
minimize the mean squared error:

MSE(β) =
1
n

n∑
i=1

(yi − ~xi · β)2 (9)

The solution is of course

β̂OLS = (xTx)−1xTy (10)

We could instead minimize the weighted mean squared error,

WMSE(β, ~w) =
1
n

n∑
i=1

wi(yi − ~xi · β)2 (11)

This includes ordinary least squares as the special case where all the weights
wi = 1. We can solve it by the same kind of linear algebra we used to solve the
ordinary linear least squares problem. If we write w for the matrix with the wi
on the diagonal and zeroes everywhere else, the solution is

β̂WLS = (xTwx)−1xTwy (12)

But why would we want to minimize Eq. 11?

1. Focusing accuracy. We may care very strongly about predicting the re-
sponse for certain values of the input — ones we expect to see often again,
ones where mistakes are especially costly or embarrassing or painful, etc.
— than others. If we give the points ~xi near that region big weights wi,
and points elsewhere smaller weights, the regression will be pulled towards
matching the data in that region.

2. Discounting imprecision. Ordinary least squares is the maximum likeli-
hood estimate when the ε in Y = ~X · β + ε is IID Gaussian white noise.
This means that the variance of ε has to be constant, and we measure
the regression curve with the same precision elsewhere. This situation, of
constant noise variance, is called homoskedasticity. Often however the
magnitude of the noise is not constant, and the data are heteroskedastic.

When we have heteroskedasticity, even if each noise term is still Gaussian,
ordinary least squares is no longer the maximum likelihood estimate, and
so no longer efficient. If however we know the noise variance σ2

i at each
measurement i, and set wi = 1/σ2

i , we get the heteroskedastic MLE, and
recover efficiency. (See below.)

To say the same thing slightly differently, there’s just no way that we can
estimate the regression function as accurately where the noise is large as
we can where the noise is small. Trying to give equal attention to all parts

4

of the input space is a waste of time; we should be more concerned about
fitting well where the noise is small, and expect to fit poorly where the
noise is big.

3. Doing something else. There are a number of other optimization prob-
lems which can be transformed into, or approximated by, weighted least
squares. The most important of these arises from generalized linear mod-
els, where the mean response is some nonlinear function of a linear pre-
dictor. (We will see these later in the course.)

In the first case, we decide on the weights to reflect our priorities. In the
third case, the weights come from the optimization problem we’d really rather
be solving. What about the second case, of heteroskedasticity?

5

-4 -2 0 2 4

-1
5

-1
0

-5
0

5
10

15

x

y

Figure 2: Black line: Linear response function (y = 3 − 2x). Grey curve:
standard deviation as a function of x (σ(x) = 1 + x2/2).

3 Heteroskedasticity

Suppose the noise variance is itself variable. For example, the figure shows a
simple linear relationship between the input X and the response Y , but also a
nonlinear relationship between X and Var [Y].

In this particular case, the ordinary least squares estimate of the regression
line is 2.56−1.65x, with R reporting standard errors in the coefficients of ±0.52
and 0.20, respectively. Those are however calculated under the assumption that
the noise is homoskedastic, which it isn’t. And in fact we can see, pretty much,
that there is heteroskedasticity — if looking at the scatter-plot didn’t convince
us, we could always plot the residuals against x, which we should do anyway.

To see whether that makes a difference, let’s re-do this many times with
different draws from the same model (Example 1).

Running ols.heterosked.error.stats(100) produces 104 random sam-
ples which all have the same x values as the first one, but different values of
y, generated however from the same model. It then uses those samples to get
the standard error of the ordinary least squares estimates. (Bias remains a
non-issue.) What we find is the standard error of the intercept is only a little
inflated (simulation value of 0.64 versus official value of 0.52), but the standard
error of the slope is much larger than what R reports, 0.46 versus 0.20. Since
the intercept is fixed by the need to make the regression line go through the
center of the data, the real issue here is that our estimate of the slope is much
less precise than ordinary least squares makes it out to be. Our estimate is still
consistent, but not as good as it was when things were homoskedastic. Can we
get back some of that efficiency?

6

-5 0 5

-2
0

0
20

40
60

80
10
0

x

y

x = rnorm(100,0,3)

y = 3-2*x + rnorm(100,0,sapply(x,function(x){1+0.5*x^2}))

plot(x,y)

abline(a=3,b=-2,col="grey")

fit.ols = lm(y~x)

abline(fit.ols,lty=2)

Figure 3: Scatter-plot of n = 100 data points from the above model. (Here
X ∼ N (0, 9).) Grey line: True regression line. Dashed line: ordinary least
squares regression line.

ols.heterosked.example = function(n) {
y = 3-2*x + rnorm(n,0,sapply(x,function(x){1+0.5*x^2}))
fit.ols = lm(y~x)
Return the errors
return(fit.ols$coefficients - c(3,-2))

}

ols.heterosked.error.stats = function(n,m=10000) {
ols.errors.raw = t(replicate(m,ols.heterosked.example(n)))
transpose gives us a matrix with named columns
intercept.sd = sd(ols.errors.raw[,"(Intercept)"])
slope.sd = sd(ols.errors.raw[,"x"])
return(list(intercept.sd=intercept.sd,slope.sd=slope.sd))

}

Code Example 1: Functions to generate heteroskedastic data and fit OLS
regression to it, and to collect error statistics on the results.

7

-5 0 5

-2
0

0
20

40
60

80

x

re
si
du
al
s(
fit
.o
ls
)

-5 0 5

0
20
00

40
00

60
00

80
00

x

(r
es
id
ua
ls
(fi
t.o
ls
))
^2

plot(x,residuals(fit.ols))
plot(x,(residuals(fit.ols))^2)

Figure 4: Residuals (left) and squared residuals (right) of the ordinary least
squares regression as a function of x. Note the much greater range of the
residuals at large absolute values of x than towards the center; this changing
dispersion is a sign of heteroskedasticity.

3.1 Weighted Least Squares as a Solution to Heteroskedas-
ticity

Suppose we visit the Oracle of Regression (Figure 5), who tells us that the
noise has a standard deviation that goes as 1 + x2/2. We can then use this to
improve our regression, by solving the weighted least squares problem rather
than ordinary least squares (Figure 6).

This not only looks better, it is better: the estimated line is now 2.67 −
1.91x, with reported standard errors of 0.29 and 0.18. Does this check out with
simulation? (Example 2.)

The standard errors from the simulation are 0.22 for the intercept and 0.23
for the slope, so R’s internal calculations are working very well.

Why does putting these weights into WLS improve things?

3.2 Some Explanations for Weighted Least Squares

Qualitatively, the reason WLS with inverse variance weights works is the follow-
ing. OLS tries equally hard to match observations at each data point.2 Weighted
least squares, naturally enough, tries harder to match observations where the
weights are big, and less hard to match them where the weights are small. But

2Less anthropomorphically, the objective function in Eq. 9 has the same derivative with
respect to the squared error at each point, ∂MSE

∂(yi−~xi·β)2
= 1.

8

Figure 5: Statistician (right) consulting the Oracle of Regression (left) about
the proper weights to use to overcome heteroskedasticity. (Image from http://en.wikipedia.

org/wiki/Image:Pythia1.jpg.)

wls.heterosked.example = function(n) {
y = 3-2*x + rnorm(n,0,sapply(x,function(x){1+0.5*x^2}))
fit.wls = lm(y~x,weights=1/(1+0.5*x^2))
Return the errors
return(fit.wls$coefficients - c(3,-2))

}

wls.heterosked.error.stats = function(n,m=10000) {
wls.errors.raw = t(replicate(m,wls.heterosked.example(n)))
transpose gives us a matrix with named columns
intercept.sd = sd(wls.errors.raw[,"(Intercept)"])
slope.sd = sd(wls.errors.raw[,"x"])
return(list(intercept.sd=intercept.sd,slope.sd=slope.sd))

}

Code Example 2: Linear regression of heteroskedastic data, using weighted
least-squared regression.

9

http://en.wikipedia.org/wiki/Image:Pythia1.jpg
http://en.wikipedia.org/wiki/Image:Pythia1.jpg

-5 0 5

-2
0

0
20

40
60

80
10
0

x

y

fit.wls = lm(y~x, weights=1/(1+0.5*x^2))

abline(fit.wls,lty=3)

Figure 6: Figure 3, with addition of weighted least squares regression line (dot-
ted).

10

each yi contains not only the true regression function r(xi) but also some noise
εi. The noise terms have large magnitudes where the variance is large. So we
should want to have small weights where the noise variance is large, because
there the data tends to be far from the true regression. Conversely, we should
put big weights where the noise variance is small, and the data points are close
to the true regression.

The qualitative reasoning in the last paragraph doesn’t explain why the
weights should be inversely proportional to the variances, wi ∝ 1/σ2

xi
— why

not wi ∝ 1/σxi
, for instance? Look at the equation for the WLS estimates

again:
β̂WLS = (xTwx)−1xTwy (13)

Imagine holding x constant, but repeating the experiment multiple times, so
that we get noisy values of y. In each experiment, Yi = ~xi · β + εi, where
E [εi] = 0 and Var [εi] = σ2

xi
. So

β̂WLS = (xTwx)−1xTwxβ + (xTwx)−1xTwε (14)
= β + (xTwx)−1xTwε (15)

Since E [ε] = 0, the WLS estimator is unbiased. In fact, for the jth coefficient,

β̂j = βj + [(xTwx)−1xTwε]j (16)

= βj +
n∑
i=1

Hji(w)εi (17)

where in the last line I have bundled up (xTwx)−1xTw as a matrix H(w), with
the argument to remind us that it depends on the weights. Since the WLS
estimate is unbiased, it’s natural to want it to also have a small variance, and

Var
[
β̂j

]
=

n∑
i=1

Hji(w)σ2
xi

(18)

It can be shown — the result is called the generalized Gauss-Markov theo-
rem — that picking weights to minimize the variance in the WLS estimate has
the unique solution wi = 1/σ2

xi
. It does not require us to assume the noise is

Gaussian, but the proof is a bit tricky (see appendix).
A less general but easier-to-grasp result comes from adding the assumption

that the noise around the regression line is Gaussian — that

Y = ~x · β + ε, ε ∼ N (0, σ2
x) (19)

The log-likelihood is then

− n

2
ln 2π − 1

2

n∑
i=1

log σ2
xi
− 1

2

n∑
i=1

(yi − ~xi · β)2

σ2
xi

(20)

11

Figure 7: The Oracle may be out (left), or too creepy to go visit (right). What
then? (Left, the sacred oak of the Oracle of Dodona, copyright 2006 by Flickr user “essayen”, http://flickr.

com/photos/essayen/245236125/; right, the entrace to the cave of the Sibyl of Cumæ, copyright 2005 by Flickr user
“pverdicchio”, http://flickr.com/photos/occhio/17923096/. Both used under Creative Commons license.)

(Exercise: show this.) If we maximize this with respect to β, everything except
the final sum is irrelevant, and so we minimize

n∑
i=1

(yi − ~xi · β)2

σ2
xi

(21)

which is just weighted least squares with wi = 1/σ2
xi

. So, if the probabilistic
assumption holds, WLS is the efficient maximum likelihood estimator.

3.3 Finding the Variance and Weights

All of this was possible because the Oracle told us what the variance function
was. What do we do when the Oracle is not available (Figure 7)?

Under some situations we can work things out for ourselves, without needing
an oracle.

• We know, empirically, the precision of our measurement of the response
variable — we know how precise our instruments are, or each value of the
response is really an average of several measurements so we can use their
standard deviations, etc.

• We know how the noise in the response must depend on the input variables.
For example, when taking polls or surveys, the variance of the proportions
we find should be inversely proportional to the sample size. So we can
make the weights proportional to the sample size.

Both of these outs rely on kinds of background knowledge which are easier to
get in the natural or even the social sciences than in data mining applications.
However, there are approaches for other situations which try to use the observed
residuals to get estimates of the heteroskedasticity; this is the topic of the next
section.

12

http://flickr.com/photos/essayen/245236125/
http://flickr.com/photos/essayen/245236125/
http://flickr.com/photos/occhio/17923096/

4 Variance Function Estimation

Remember that there are two equivalent ways of defining the variance:

Var [X] = E
[
X2
]
− (E [X])2 = E

[
(X −E [X])2

]
(22)

The latter is more useful for us when it comes to estimating variance functions.
We have already figured out how to estimate means — that’s what all this
previous work on smoothing and regression is for — and the deviation of a
random variable from its mean shows up as a residual.

There are two generic ways to estimate conditional variances, which dif-
fer slightly in ho they use non-parametric smoothing. We can call these the
squared residuals method and the log squared residuals method. Here
is how the first one goes.

1. Estimate r(x) with your favorite regression method, getting r̂(x).

2. Construct the squared residuals, ui = (yi − r̂(xi))2.

3. Use your favorite non-parametric method to estimate the conditional mean
of the ui, call it q̂(x).

4. Predict the variance using σ̂2
x = q̂(x).

The log-squared residuals method goes very similarly.3

1. Estimate r(x) with your favorite regression method, getting r̂(x).

2. Construct the log squared residuals, zi = log (yi − r̂(xi))2.

3. Use your favorite non-parametric method to estimate the conditional mean
of the zi, call it ŝ(x).

4. Predict the variance using σ̂2
x = exp ŝ(x).

The quantity yi− r̂(xi) is the ith residual. If r̂ ≈ r, then the residuals should
have mean zero. Consequently the variance of the residuals (which is what we
want) should equal the expected squared residual. So squaring the residuals
makes sense, and the first method just smoothes these values to get at their
expectations.

What about the second method — why the log? Basically, this is a conve-
nience — squares are necessarily non-negative numbers, but lots of regression
methods don’t easily include constraints like that, and we really don’t want to
predict negative variances.4 Taking the log gives us an unbounded range for the
regression.

3I learned it from Wasserman (2006, pp. 87–88).
4Occasionally you do see people doing things like claiming that genetics explains more than

100% of the variance in some psychological trait, and so the contributions of environment and
up-bringing have negative variance. Some of them — for instance, Alford et al. (2005) —
manage to say this with a straight face.

13

Strictly speaking, we don’t need to use non-parametric smoothing for either
method. If we had a parametric model for σ2

x, we could just fit the parametric
model to the squared residuals (or their logs). But even if you think you know
what the variance function should look like it, why not check it?

We came to estimating the variance function because of wanting to do
weighted least squares, but these methods can be used more generally. It’s
often important to understand variance in its own right, and this is a general
method for estimating it. Our estimate of the variance function depends on first
having a good estimate of the regression function

4.1 Iterative Refinement of Mean and Variance: An Ex-
ample

The estimate σ̂2
x depends on the initial estimate of the regression function r̂(x).

But, as we saw when we looked at weighted least squares, taking heteroskedas-
ticity into account can change our estimates of the regression function. This
suggests an iterative approach, where we alternate between estimating the re-
gression function and the variance function, using each to improve the other.
That is, we take either method above, and then, once we have estimated the
variance function σ̂2

x, we re-estimate r̂ using weighted least squares, with weights
inversely proportional to our estimated variance. Since this will generally change
our estimated regression, it will change the residuals as well. Once the residu-
als have changed, we should re-estimate the variance function. We keep going
around this cycle until the change in the regression function becomes so small
that we don’t care about further modifications. It’s hard to give a strict guar-
antee, but usually this sort of iterative improvement will converge.

Let’s apply this idea to our example. Figure 4b already plotted the residuals
from OLS. Figure 8 shows those squared residuals again, along with the true
variance function and the estimated variance function.

The OLS estimate of the regression line is not especially good — β̂0 = 2.56
versus β0 = 3, β̂1 = −1.65 versus β1 = −2 — so the residuals are systematically
off, but it’s clear from the figure that kernel smoothing of the squared residuals
is picking up on the heteroskedasticity, and getting a pretty reasonable picture
of the variance function.

Now we use the estimated variance function to re-estimate the regression
line, with weighted least squares.

> fit.wls1 <- lm(y~x,weights=1/fitted(var1))
> coefficients(fit.wls1)
(Intercept) x

2.595860 -1.876042
> var2 <- npreg(residuals(fit.wls1)^2 ~ x)

The slope has changed substantially, and in the right direction (Figure 9a). The
residuals have also changed (Figure 9b), and the new variance function is closer
to the truth than the old one.

14

-5 0 5

0
20
00

40
00

60
00

80
00

x

sq
ua

re
d

re
si

du
al

s

plot(x,residuals(fit.ols)^2,ylab="squared residuals")
curve((1+x^2/2)^2,col="grey",add=TRUE)
require(np)
var1 <- npreg(residuals(fit.ols)^2 ~ x)
grid.x <- seq(from=min(x),to=max(x),length.out=300)
lines(grid.x,predict(var1,exdat=grid.x))

Figure 8: Points: actual squared residuals from the OLS line. Grey curve: true
variance function, σ2

x = (1 + x2/2)2. Black curve: kernel smoothing of the
squared residuals, using npreg.

15

-5 0 5

-2
0

0
20

40
60

80
10
0

x

y

-5 0 5

0
20
00

40
00

60
00

80
00

x

sq
ua

re
d

re
si

du
al

s

fit.wls1 <- lm(y~x,weights=1/fitted(var1))
plot(x,y)
abline(a=3,b=-2,col="grey")
abline(fit.ols,lty=2)
abline(fit.wls1,lty=3)
plot(x,(residuals(fit.ols))^2,ylab="squared residuals")
points(x,(residuals(fit.wls1))^2,pch=15)
lines(grid.x,predict(var1,exdat=grid.x))
var2 <- npreg(residuals(fit.wls1)^2 ~ x)
curve((1+x^2/2)^2,col="grey",add=TRUE)
lines(grid.x,predict(var2,exdat=grid.x),lty=3)

Figure 9: Left: As in Figure 3, but with the addition of the weighted least
squares regression line (dotted), using the estimated variance from Figure 8 for
weights. Right: As in Figure 8, but with the addition of the residuals from
the WLS regression (black squares), and the new estimated variance function
(dotted curve).

16

Since we have a new variance function, we can re-weight the data points and
re-estimate the regression:

> fit.wls2 <- lm(y~x,weights=1/fitted(var2))
> coefficients(fit.wls2)
(Intercept) x

2.625295 -1.914075
> var3 <- npreg(residuals(fit.wls2)^2 ~ x)

Since we know that the true coefficients are 3 and −2, we know that this is
moving in the right direction. If I hadn’t told you what they were, you could
still observe that the difference in coefficients between fit.wls1 and fit.wls2
is smaller than that between fit.ols and fit.wls1, which is a sign that this
is converging.

I will spare you the plot of the new regression and of the new residuals.
When we update a few more times:

> fit.wls3 <- lm(y~x,weights=1/fitted(var3))
> coefficients(fit.wls3)
(Intercept) x

2.630249 -1.920476
> var4 <- npreg(residuals(fit.wls3)^2 ~ x)
> fit.wls4 <- lm(y~x,weights=1/fitted(var4))
> coefficients(fit.wls4)
(Intercept) x

2.631063 -1.921540

By now, the coefficients of the regression are changing in the fourth significant
digit, and we only have 100 data points, so the imprecision from a limited sample
surely swamps the changes we’re making, and we might as well stop.

Manually going back and forth between estimating the regression function
and estimating the variance function is tedious. We could automate it with a
function, which would look something like this:

iterative.wls <- function(x,y,tol=0.01,max.iter=100) {
iteration <- 1
old.coefs <- NA
regression <- lm(y~x)
coefs <- coefficients(regression)
while (is.na(old.coefs) ||

((max(coefs - old.coefs) > tol) && (iteration < max.iter))) {
variance <- npreg(residuals(regression)^2 ~ x)
old.coefs <- coefs
iteration <- iteration+1
regression <- lm(y~x,weights=1/fitted(variance))
coefs <- coefficients(regression)

}
return(list(regression=regression,variance=variance,iterations=iteration))

}

17

This starts by doing an unweighted linear regression, and then alternates be-
tween WLS for the getting the regression and kernel smoothing for getting the
variance. It stops when no parameter of the regression changes by more than
tol, or when it’s gone around the cycle max.iter times.5 This code is a bit too
inflexible to be really “industrial strength” (what if we wanted to use a data
frame, or a more complex regression formula?), but shows the core idea.

5The condition in the while loop is a bit complicated, to ensure that the loop is executed
at least once. Some languages have an until control structure which would simplify this.

18

5 Local Linear Regression

Switching gears, recall from the last handout that one reason it can be sensible
to use a linear approximation to the true regression function r(x) is that we can
always6 Taylor-expand the latter around any point x0,

r(x) = r(x0) +
∞∑
k=1

(x− x0)k

k!
dkr

drk

∣∣∣∣
x=x0

(23)

and similarly with all the partial derivatives in higher dimensions. If we truncate
the series at first order, r(x) ≈ r(x0)+(x−x0)r′(x0), we see that the first-order
coefficient r′(x0) is the best linear prediction coefficient, at least when x is
sufficiently close to x0. The snag in this line of argument is that if r(x) isn’t
really linear, then r′ isn’t a constant, and the optimal linear predictor to use
depends on where we want to make predictions.

However, statisticians are thrifty people, and having assembled all the ma-
chinery for linear regression, they are loathe to throw it away just because the
fundamental model is wrong. If we can’t fit one line, why not fit many? If each
point has a different best linear regression, why not estimate them all? Thus
the idea of local linear regression: fit a different linear regression everywhere,
weighting the data points by how close they are to the point of interest.

The very simplest approach we could take would be to divide up the range
of x into so many bins, and fit a separate linear regression for each bin. This is
unsatisfying for at least three reasons. First, it gives us weird discontinuities at
the boundaries between bins. Second, it introduces an odd sort of bias, where
our predictions near the boundaries of a bin depend strongly on data from the
other side of the bin, and not at all on nearby data points just across the border,
which is weird. Third, we need to pick the bins.

The next simplest approach would be to first figure out where we want to
make a prediction (say x), and do a linear regression with all the data points
which were sufficiently close, |xi − x| ≤ h for some h. Now we are basically
using a uniform-density kernel to weight the data points. This eliminates two
problems from the binning idea — the examples we include are always centered
on the x we’re trying to get a prediction for, and we just need to pick one
bandwidth h rather than placing all the bin boundaries. But still, each example
point always has either weight 0 or weight 1, so our predictions change jerkily
as training points fall into or out of the window. It generally works nicer to
have the weights change more smoothly with the distance, starting off large and
then gradually trailing to zero.

By now bells may be going off in your head, as this sounds very similar to the
kernel regression. In fact, kernel regression is what happens when we truncate
Eq. 23 at zeroth order, getting locally constant regression. Here’s the problem
we’re setting up:

argmin
m(x)

1
n

n∑
i=1

wi(x)(yi −m(x))2 (24)

6At least if r(x) is differentiable.

19

which has the solution

m̂(x) =
∑n
i=1 wi(x)yi∑n
j=1 wj(x)

(25)

which just is our kernel regression, with the weights being proportional to the
kernels, wi(x) ∝ K(xi, x). (Without loss of generality, we can take the constant
of proportionality to be 1.)

What about locally linear regression? The optimization problem is

argmin
β

1
n

n∑
i=1

wi(x)(yi − ~xi · β(x))2 (26)

where again we can write wi(x) is proportional to some kernel function, wi(x) ∝
K(xi, x). (Also, assume that the constant 1 is always part of ~x, to handle the
intercept.) Now that we know how to solve weighted least squares, we can say
that

β̂(x) = (xTw(x)x)−1xTw(x)y (27)

and the prediction is

r̂(x) = x · (xTw(x)x)−1xTw(x)y) (28)

So the prediction will change smoothly with x if the weights given to each
training point change smoothly.7

Using a smooth kernel whose density is positive everywhere, like the Gaus-
sian, ensures that the weights will change smoothly. But we could also use a
kernel which goes to zero outside some finite range, so long as the kernel rises
gradually from zero inside the range. For locally linear regression, a common
choice of kernel is therefore the tri-cubic,

K(xi, x) =

(
1−

(
|xi − x0|

h

)3
)3

(29)

if |x− xi| < h, and = 0 otherwise (Figure 10).

5.1 Advantages and Disadvantages of Locally Linear Re-
gression

Why would we use locally linear regression, if we already have kernel regression?

1. The predictions of locally linear regression tend to be smoother than those
of kernel regression, simply because we are locally fitting a smooth line
rather than a flat constant. As a consequence, estimates of the derivative
dr̂
dx tend to be less noisy when r̂ comes from a locally linear model than a
kernel regression.

7Notice that local linear predictors are still linear smoothers as defined in the first handout
(i.e., the predictions are linear in the yi), but they are not kernel smoothers, since you can’t
re-write the last equation in the form of a kernel average.

20

-1.0 -0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

tri
cu

bi
c

fu
nc

tio
n

curve((1-abs(x)^3)^3,from=-1,to=1,ylab="tricubic function")

Figure 10: The tricubic kernel, with broad plateau where |x| ≈ 0, and the
smooth fall-off to zero at |x| = 1.

2. Kernel regression suffers from a peculiar form of bias at the edges of the
training data. Suppose that the true r(x) is decreasing in the vicinity of
the largest xi. (See the grey curve in Figure 11; it could just as well be
increasing, or we could be looking at the minimum.) When we make our
predictions there, in kernel regression we can only average values of yi
which tend to be systematically larger than the value we want to predict.
This means that our kernel predictions are systematically biased upwards.
(See the black line in Figure 11 at the lower right.) This is not such an
issue in the middle of the data set, where there will be example points on
either side, with canceling deviations from the true expectation. If we use
a locally linear model, however, it can pick up that there is a trend, and
reduce the edge bias by extrapolating it (dashed line in the figure).

On the other hand, if I already knew about locally linear regression, and it
has all these advantages, why did I bother teaching you about kernel regres-
sion? Because locally linear regression has disadvantages as well. Remember
the bias-variance trade-off: the smoother curves and less variable predictions of
locally linear regression come at the risk of additional bias, if the true regression
function is not especially smooth. And indeed the bias of locally linear regres-
sion is generally higher than that of kernel smoothing, except for the weird issue
about boundaries I just mentioned — and how often do you want to predict
what happens near the boundary?

There are several packages which implement locally linear regression. Since
we are already using np, one of the simplest is to set the regtype="ll" in

21

0.5 1.0 1.5 2.0 2.5 3.0

2
4

6
8

x

y

x <- runif(30,max=3)
y <- 9-x^2 + rnorm(30,sd=0.1)
plot(x,y); rug(x,side=1, col="grey"); rug(y,side=2, col="grey")
curve(9-x^2,col="grey",add=TRUE,lwd=3)
grid.x <- seq(from=0,to=3,length.out=300)
np0 <- npreg(y~x); lines(grid.x,predict(np0, exdat=grid.x))
np1 <- npreg(y~x,regtype="ll"); lines(grid.x,predict(np1, exdat=grid.x),lty=2)

Figure 11: Points are samples from the true, nonlinear regression function shown
in grey. The solid black line is a kernel regression, and the dashed line is a locally
linear regression. Note that the locally linear model is smoother than the kernel
regression, and less biased when the true curve has a non-zero bias at a boundary
of the data (far right).

22

npreg.8 There are several other packages which support it, notably KernSmooth
and locpoly.

As the name of the latter suggests, there is no reason we have to stop at
locally linear models, and we could use local polynomials of any order. The
main reason to use a higher-order local polynomial, rather than a locally-linear
or locally-constant model, is to estimate higher derivatives. Since this is a
somewhat specialized topic, I will not say more about it.

5.2 Lowess

There is however one additional topic in locally linear models which is worth
mentioning. This is the variant called lowess or loess.9 The basic idea is
to fit a locally linear model, with a kernel which goes to zero outside a finite
window and rises gradually inside it, typically the tri-cubic I plotted earlier.
The wrinkle, however, is that rather than solving a least squares problem, it
minimizes a different and more “robust” loss function,

argmin
β(x)

1
n

n∑
i=1

wi(x)`(y − ~xi · β(x)) (30)

where `(a) doesn’t grow as rapidly for large a as a2. The idea is to make
the fitting less vulnerable to occasional large outliers, which would have very
large squared errors, unless the regression curve went far out of its way to
accommodate them. For instance, we might have `(a) = a2 if |a| < 1, and
`(a) = |a| otherwise. We will come back to robust estimation later, but I
bring it up now because it’s a very common smoothing technique, especially for
visualization.

Lowess smoothing is implemented in the default R packages through the
function lowess (rather basic), and through the function loess (more sophisti-
cated), as well as in the CRAN package locfit (more sophisticated still). The
lowess idea can be combined with local fitting of higher-order polynomials; the
loess and locfit commands both support this.

8"ll" stands for “locally linear”, of course; the default is regtype="lc", for “locally con-
stant”.

9I have heard this name explained as an acronym for both “locally weighted scatterplot
smoothing” and “locally weight sum of squares”.

23

6 Exercises

To think through or experiment with, not to hand in.

1. Do the calculus to verify Eq. 12.

2. Is wi = 1 a necessary as well as a sufficient condition for Eq. 11 and Eq.
9 to have the same minimum?

3. The text above looked at whether WLS gives better parameter estimates
than OLS when there is heteroskedasticity, and we know and use the
variance. Modify the code for to see which one has better generalization
error.

4. Should local linear regression do better or worse than ordinary least squares
under heteroskedasticity? What exactly would this mean, and how might
you test your ideas?

24

A Proof of the Gauss-Markov Theorem

We want to prove that, when we are doing weighted least squares for linear
regression, the best choice of weights wi = 1/σ2

xi
. We have already established

that WLS is unbiased, so “best” here means minimizing the variance. We have
also already established that

β̂WLS = h(w)y (31)

where the matrix h(w) is

h(w) = (xTwx)−1xTw (32)

It would be natural to try to write out the variance as a function of the
weights w, set the derivative equal to zero, and solve. This is tricky, partly
because we need to make sure that all the weights are positive and add up to
one, but mostly because of the matrix inversion in the definition of h. A slightly
indirect approach is actually much easier.

Write w0 for the inverse-variance weight matrix, and h0 for the hat matrix
we get with those weights. Then for any other choice of weights, we have
h(w) = h0 + c. Since we know WLS estimates are all unbiased, we must have

(h0 + c)xβ = β (33)

but using the inverse-variance weights is a particular WLS estimate so

h0xβ = β (34)

and so we can deduce that
cx = 0 (35)

from unbiasedness.
Now consider the covariance matrix of the estimates, Var

[
β̃
]
. This will be

Var [(h0 + c)Y], which we can expand:

Var
[
β̃
]

= Var [(h0 + c)Y] (36)

= (h0 + c)Var [Y] (h0 + c)T (37)
= (h0 + c)w0

−1(h0 + c)T (38)
= h0w0

−1h0
T + cw0

−1h0
T + h0w0

−1cT + cw0
−1cT (39)

= (xTw0x)−1xTw0w0
−1w0x(xTw0x)−1 (40)

+cw0
−1w0x(xTw0x)−1

+(xTw0x)−1xTw0w0
−1cT

+cw0
−1cT

= (xTw0x)−1xTw0x(xTw0x)−1 (41)
+cx(xTw0x)−1 + (xTw0x)−1xT cT

+cw0
−1cT

= (xTw0x)−1 + cw0
−1cT (42)

25

where in the last step we use the fact that cx = 0 (and so xT cT = 0T = 0).
Since cw0

−1cT ≥ 0, we see that the variance is minimized by setting c = 0, and
using the inverse variance weights.

Notes:

1. The proof actually works when comparing the inverse-variance weights to
any other linear, unbiased estimator; WLS with different weights is just a
special case.

2. If all the variances are equal, then we’ve proved the optimality of OLS.

3. We can write the WLS problem as that of minimizing (y−xβ)Tw(y−xβ).
If we allow w to be a non-diagonal, but still positive-definite, matrix, then
we have the generalized least squares problem. This is appropriate
when there are correlations between the noise terms at different observa-
tions, i.e., when Cov [εi, εj] 6= 0 even though i 6= j. In this case, the proof
is easily adapted to show that the optimal weight matrix w is the inverse
of the noise covariance matrix.

References

Alford, J. R., C. L. Funk and J. R. Hibbibng (2005). “Are Political Orientations
Genetically Transmitted?” American Political Science Review , 99: 153–167.

Gelman, Andrew and Iain Pardoe (2007). “Average predictive comparisons
for models with nonlinearity, interactions, and variance components.” So-
ciological Methodology , 37: 23–51. URL http://www.stat.columbia.edu/

~gelman/research/published/ape17.pdf.

Wasserman, Larry (2006). All of Nonparametric Statistics. Berlin: Springer-
Verlag.

26

http://www.stat.columbia.edu/~gelman/research/published/ape17.pdf
http://www.stat.columbia.edu/~gelman/research/published/ape17.pdf

	Average Predictive Comparisons
	Weighted Least Squares
	Heteroskedasticity
	Weighted Least Squares as a Solution to Heteroskedasticity
	Some Explanations for Weighted Least Squares
	Finding the Variance and Weights

	Variance Function Estimation
	Iterative Refinement of Mean and Variance: An Example

	Local Linear Regression
	Advantages and Disadvantages of Locally Linear Regression
	Lowess

	Exercises
	Proof of the Gauss-Markov Theorem

