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We have spent a lot of time looking at how to estimate means (which is

regression). In the last lecture, we saw how to estimate variances as well (by
turning it into a problem about means). We could extend the same methods to
looking at higher moments — if you need to find the conditional skewness or
kurtosis functions, you can tackle that in the same way as finding the conditional
variance. But what if we want to look at the whole distribution?

You’ve already seen the parametric solution to the problem in earlier statis-
tics courses: posit a parametric model for the density (Gaussian, Student’s t,
exponential, gamma, beta, Pareto, . . . ) and estimate the parameters. Maxi-
mum likelihood estimates are generally consistent and efficient for such prob-
lems. But suppose you don’t have any particular parametric density family in
mind, or want to check one — how could we estimate a probability distribution
non-parametrically?
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1 Histograms Revisited

For most of you, making a histogram was probably one of the first things you
learned how to do in intro stats (if not before). This is a simple way of estimating
a distribution: we split the sample space up into bins, count how many samples
fall into each bin, and then divide the counts by the total number of samples.
If we hold the bins fixed and take more and more data, then by the law of large
numbers we anticipate that the relative frequency for each bin will converge on
the bin’s probability.

So far so good. But one of the things you learned in intro stats was also
to work with probability density functions, not just probability mass functions.
Where do we get pdfs? Well, one thing we could do is to take our histogram
estimate, and then say that the probability density is uniform within each bin.
This gives us a piecewise-constant estimate of the density.

Unfortunately, this isn’t going to work — isn’t going to converge on the true
pdf — unless we can shrink the bins of the histogram as we get more and more
data. To see this, think about estimating the pdf when the data comes from
any of the standard distributions, like an exponential or a Gaussian. We can
approximate the true pdf f(x) to arbitrary accuracy by a piecewise-constant
density (indeed, that’s what happens every time we plot it on our screens), but,
for a fixed set of bins, we can only come so close to the true, continuous density.

This reminds us of our old friend the bias-variance trade-off, and in fact
that’s correct. If we use a large number of very small bins, the minimum bias
in our estimate of any density becomes small, but the variance in our estimates
grows. (Why does variance increase?) To make some use of this insight, though,
there are some things we need to establish first.

• Is learning the whole distribution non-parametrically even feasible?

• How can we measure error so deal with the bias-variance trade-off?

2 “The Fundamental Theorem of Statistics”

Let’s deal with the first point first. In principle, something even dumber than
shrinking histograms will work to learn the whole distribution. Suppose we
have one-dimensional one-dimensional samples x1, x2, . . . xn with a common cu-
mulative distribution function F . The empirical cumulative distribution
function on n samples, F̃n(a) is

F̃n(a) ≡ 1
n

n∑
i=1

1(−∞,a])(xi) (1)

In words, this is just the fraction of the samples which are ≤ a. Then the
Glivenko-Cantelli theorem says

max
a
|F̃n(a)− F (a)| → 0 (2)
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So the empirical CDF converges to the true CDF everywhere; the maximum gap
between the two of them goes to zero. Pitman (1979) calls this the “fundamental
theorem of statistics”, because it says we can learn distributions just by collect-
ing enough data.1 The same kind of result also holds for higher-dimensional
vectors.

If the Glivenko-Cantelli theorem is so great, why aren’t we just content with
the empirical CDF? Well, sometimes we are, but, inconveniently, it doesn’t
translate well into a probability density. Suppose that x1, x2, . . . xn are sorted
into increasing order. What probability does the empirical CDF put on any
value between xi and xi+1? Clearly, zero. This could be right, but we have
centuries of experience now with probability distributions, and this tells us that
usually we can expect to find some new samples between our old ones. So we’d
like to get a non-zero density between our observations.

Using a uniform distribution within each bin of a histogram doesn’t have
this issue, but it does leave us with the problem of picking where the bins go
and how many of them we should use. Of course, there’s nothing magic about
keeping the bin size the same and letting the number of points in the bins vary;
we could equally well pick bins so they had equal counts.2 So what should we
do?

3 Error for Density Estimates

Our first step is to get clear on what we mean by a “good” density estimate.
There are three leading ideas:

1.
∫

(f(x)− f̂(x))
2
dx should be small: the squared deviation from the true

density should be small, averaging evenly over all space.

1Note that for any one, fixed value of a, that |F̃n(a) − F (a)| → 0 is just an application
of the law of large numbers. The extra work Glivenko and Cantelli did was to show that
this held for infinitely many values of a at once, so that even if we focus on the biggest gap
between the estimate and the truth, that still shrinks with n. We won’t go into the details,
but here’s the basic idea. Fix an ε > 0; first show that there is some finite set of points on
the line, call them b1, . . . bq , such that |F̃n(a)− F̃n(bi)| < ε| and |F (a)− F (bi)| < ε for some

bi. Next, show that, for large enough n, |F (bi)− F̃n(bi)| < ε for all the bi. (This follows from
the law of large numbers and the fact that q is finite.) Finally, use the triangle inequality to
conclude that, for large enough n, |F̃n(a)−F (a)| < 3ε. Since ε can be made arbitrarily small,
the Glivenko-Cantelli theorem follows. (Yes, there are some details I’m glossing over.) This
general strategy — combining pointwise convergence theorems with approximation arguments
— forms the core of what’s called empirical process theory, which underlies the consistency
of basically all the non-parametric procedures we’ve seen.

2A specific idea for how to do this is sometimes called a k − d tree. We have d random
variables and want a joint density for all of them. Fix an ordering of the variables Start
with the first variable, and find the thresholds which divide it into k parts with equal counts.
(Usually but not always k = 2.) Then sub-divide each part into k equal-count parts on the
second variable, then sub-divide each of those on the third variable, etc. After splitting on
the dth variable, go back to splitting on the first, until no further splits are possible. With n
data points, it takes about logk n splits before coming down to individual data points. Each
of these will occupy a cell of some volume. Estimate the density on that cell as one over that
volume. Of course it’s not strictly necessary to keep refining all the way down to single points.
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2.
∫
|f(x)− f̂(x)|dx should be small: minimize the average absolute, rather

than squared, deviation.

3.
∫
f(x) log f(x)

f̂(x)
dx should be small: the average log-likelihood ratio should

be kept low.

Option (1) is reminiscent of the MSE criterion we’ve used in regression. Op-
tion (2) looks at what’s called the L1 or total variation distance between the
true and the estimated density. It has the nice property that 1

2

∫
|f(x)− f̂(x)|dx

is exactly the maximum error in our estimate of the probability of any set. Un-
fortunately it’s a bit tricky to work with, so we’ll skip it here. (But see Devroye
and Lugosi (2001)). Finally, minimizing the log-likelihood ratio is intimately
connected to maximizing the likelihood. We will come back to this, but, like
most texts on density estimation, we will give more attention to minimizing (1),
because it’s mathematically tractable.

Notice that∫
(f(x)− f̂(x))

2
dx =

∫
f2(x)dx− 2

∫
f̂(x)f(x)dx+

∫
f̂2(x)dx (3)

The first term on the right hand side doesn’t depend on the estimate f̂(x)
at all, so we can ignore it for purposes of optimization. The third one only
involves f̂ , and is just an integral, which we can do numerically. That leaves
the middle term, which involves both the true and the estimated density; we
can approximate it by

− 2
n

n∑
i=1

f̂(xi) (4)

The reason we can do this is that, by the Glivenko-Cantelli theorem, integrals
over the true density are approximately equal to sums over the empirical distri-
bution.

So our final error measure is

− 2
n

n∑
i=1

f̂(xi) +
∫
f̂2(x)dx (5)

In fact, this error measure does not depend on having one-dimension data; we
can use it in any number of dimensions.3 For purposes of cross-validation (you
knew that was coming, right?), we can estimate f̂ on the training set, and then
restrict the sum to points in the testing set.

3.1 Analysis for Histogram Density Estimates

We now have the tools to do most of the analysis of histogram density estimation.
(We’ll do it in one dimension for simplicity.) Pick a point x, which lies in a bin

3Admittedly, in high-dimensional spaces, doing the final integral can become numerically
challenging.
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whose boundaries are x0 and x0 +h. We want to estimate the density at x, and
this is

f̂n(x) =
1
h

1
n

n∑
i=1

1(x0,x0+h](xi) (6)

Let’s call the sum, the number of points in the bin, b. It’s a random quantity,
B ∼ Binomial(n, p), where p is the true probability of falling into the bin,
p = F (x0 + h)− F (x0). The mean of B is np, and the variance is np(1− p), so

E
[
f̂n(x)

]
=

1
nh

E [B] (7)

=
n[F (x0 + h)− F (x0)]

nh
(8)

=
F (x0 + h)− F (x0)

h
(9)

and the variance is

Var
[
f̂n(x)

]
=

1
n2h2

Var [B] (10)

=
n[F (x0 + h)− F (x0)][1− F (x0 + h) + F (x0)]

n2h2
(11)

= E
[
f̂n(x)

] 1− F (x0 + h) + F (x0)
nh

(12)

If we let h→ 0 as n→∞, then

E
[
f̂n(x)

]
→ lim

h→0

F (x0 + h)− F (x0)
h

= f(x0) (13)

since the pdf is the derivative of the CDF. But since x is between x0 and x0 +h,
f(x0) → f(x). So if we use smaller and smaller bins as we get more data, the
histogram density estimate is unbiased. We’d also like its variance to shrink as
the same grows. Since 1−F (x0 + h) +F (x0)→ 1 as h→ 0, to get the variance
to go away we need nh→∞.

To put this together, then, our first conclusion is that histogram density
estimates will be consistent when h → 0 but nh → ∞ as n → ∞. The bin-
width h needs to shrink, but slower than n−1.

At what rate should it shrink? Small h gives us low bias but (as you can
verify from the algebra above) high variance, so we want to find the trade-off
between the two. One can calculate the bias at x from our formula for E

[
f̂n(x)

]
through a somewhat lengthy calculus exercise4; the upshot is that the integrated
squared bias is∫

dx
(
f(x)−E

[
f̂n(x)

])2

=
h2

12

∫
dx(f ′(x))2 + o(h2) (14)

4You need to use the intermediate value theorem multiple times; see for instance Wasser-
man (2006, sec. 6.8).
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We already got the variance at x, and when we integrate that over x we find∫
dxVar

[
f̂n(x)

]
=

1
nh

+ o(n−1) (15)

So the total integrated squared error is

ISE =
h2

12

∫
dx(f ′(x))2 +

1
nh

+ o(h2) + o(n−1) (16)

Differentiating this with respect to h and setting it equal to zero, we get

hopt

6

∫
dx(f ′(x))2 =

1
nh2

opt

(17)

hopt =

(
6∫

dx(f ′(x))2

)1/3

n−1/3 (18)

So we need narrow bins if the density changes rapidly (
∫
dx(f ′(x))2 is large), and

wide bins if the density is relatively flat. No matter how rough the density, the
bin width should shrink like n−1/3. Plugging that rate back into the equation
for the ISE, we see that it is O(n−2/3).

It turns out that if we pick h by cross-validation, then we attain this optimal
rate in the large-sample limit. By contrast, if we knew the correct parametric
form and just had to estimate the parameters, we’d typically get an error decay
of O(n−1). This is substantially faster than histograms, so it would be nice
if we could make up some of the gap, without having to rely on parametric
assumptions.

4 Kernel Density Estimates

It turns out that one can improve the convergence rate, as well as getting
smoother estimates, but using kernels. The kernel density estimate is

f̂h(x) =
1
n

n∑
i=1

1
h
K

(
x− xi

h

)
(19)

where K is a kernel function such as we encountered when looking at kernel
regression. (The factor of 1/h inside the sum is so that f̂h will integrate to
1; we could have included it in both the numerator and denominator of the
kernel regression formulae, but then it would’ve just canceled out.) As before,
h is the bandwdith of the kernel. We’ve seen typical kernels in things like the
Gaussian. One advantage of using them is that they give us a smooth density
everywhere, unlike histograms, and in fact we can even use them to estimate
the derivatives of the density, should that be necessary.5

5The advantage of histograms is that they’re computationally and mathematically simpler.
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How do we know that kernels will in fact work? Well, let’s look at the mean
and variance of the kernel density estimate at a particular point x, and use
Taylor’s theorem on the density.

E
[
f̂n(x)

]
(20)

=
1
n

n∑
i=1

E
[

1
h
K

(
x−Xi

h

)]
= E

[
1
h
K

(
x−X
h

)]
(21)

=
∫
dt

1
h
K

(
x− t
h

)
f(t) (22)

=
∫
duK(u)f(x− hu) (23)

=
∫
duK(u)

[
f(x)− huf ′(x) +

h2u2

2
f ′′(x)− h3u3

3!
f ′′′(x) + . . .

]
(24)

= f(x) +
h2f ′′(x)

2

∫
duK(u)u2 +

h3f ′′′(x)
3!

∫
duK(u)u3 + . . . (25)

(26)

because, by definition,
∫
duK(u) = 1 and

∫
duK(u)u = 0. If we call

∫
duK(u)u2 =

σ2
K , then the bias of the kernel density estimate is

E
[
f̂n(x)

]
− f(x) =

h2σ2
Kf
′′(x)

2
+ o(h2) (27)

So the bias will go to zero if the bandwidth h shrinks to zero. What about the
variance? Use Taylor’s theorem again:

Var
[
f̂n(x)

]
(28)

=
1
n

Var
[

1
h
K

(
x−X
h

)]
=

1
n

[
E
[

1
h2
K2

(
x−X
h

)]
−
(
E
[

1
h
K

(
x−X
h

)])2
]

(29)

=
1
n

[∫
dt

1
h2
K2

(
x− t
h

)
dt−

[
f(x) +O(h2)

]2]
(30)

=
1
n

[∫
du

1
h
K2(u)f(x− hu)− f2(x) +O(h2)

]
(31)

=
1
n

[∫
du

1
h
K2(u) [f(x)− huf ′(x) + + . . .]− f2(x)−O(h)

]
(32)

=
f(x)
hn

∫
K2(u)du+O(1/n) (33)
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This will go to zero if nh→∞ as n→∞. So the conclusion is the same as for
histograms: h has to go to zero, but slower than 1/n.

Since the expected squared error at x is the bias squared plus the variance,

h4σ4
K(f ′′(x))2

4
+
f(x)
hn

∫
duK2(u) + small (34)

the expected integrated squared error is

ISE ≈ h4σ4
K

4

∫
dx(f ′′(x))2 +

∫
duK2(u)
nh

(35)

Differentiating with respect to h for the optimal bandwidth hopt, we find

h3
optσ

4
K

∫
dx(f ′′(x))2 =

∫
duK2(u)
nh2

opt

(36)

hopt =
( ∫

duK2(u)
σ4

K

∫
dx(f ′′(x))2

)1/5

n−1/5 (37)

That is, the best bandwidth goes to zero like one over the fifth root of the number
of sample points. Plugging this into Eq. 35, the best ISE goes to zero like n−4/5.
This is better than the n−2/3 rate of histograms, but still includes a penalty for
having to figure out what kind of distribution we’re dealing with. Remarkably
enough, using cross-validation to pick the bandwidth gives near-optimal results.

Going through a similar analysis for d-dimensional data shows that the ISE
goes to zero like n−4/(4+d), and again, if we use cross-validation to pick the
bandwidths, asymptotically we attain this rate. Unfortunately, if d is large, this
rate becomes very slow — for instance, if d = 24, the rate is O(n−1/7). There
is simply no universally good way to figure out high-dimensional distributions
from scratch; either we make strong parametric assumptions, which could be
badly wrong, or we accept a potentially very slow convergence.

As an alternative to cross-validation, or at least a starting point, one can
use Eq. 37 to show that the optimal bandwidth for using a Gaussian kernel
to estimate a Gaussian distribution is 1.06σ/n1/5, with σ being the standard
deviation of the Gaussian. This is sometimes called the Gaussian reference
rule or the rule-of-thumb bandwidth. When you call density in R, this is
basically what it does.

Yet another technique is the plug-in method. Eq. 37 calculates the optimal
bandwidth from the second derivative of the true density. This doesn’t help if
we don’t know the density, but it becomes useful if we have an initial density
estimate which isn’t too bad. In the plug-in method, we start with an initial
bandwidth (say from the Gaussian reference rule) and use it to get a preliminary
estimate of the density. Taking that crude estimate and “plugging it in” to Eq.
37 gives us a new bandwidth, and we re-do the kernel estimate with that new
bandwidth. Iterating this a few times is optional but not uncommon.
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Sampling from a kernel density estimate There are times when one wants
to draw a random sample from the estimated distribution. This is easy with
kernel density estimates, because each kernel is itself a probability density, gen-
erally a very tractable one. The general pattern goes as follows. Suppose the
kernel is Gaussian, that we have scalar observations x1, x2, . . . xn, and the se-
lected bandwidth is h. Then we pick an integer uniformly at random from 1 to
n, and invoke rnorm(1,x[i],h).6 Using a different kernel, we’d just need to
use the random number generator function for the corresponding distribution.

Sampling from a histogram estimate is also simple, but in a sense goes in the
opposite order. We first randomly pick a bin by drawing from a multinomial
distribution, with weights proportional to the bin counts. Once we have a bin,
we draw from a uniform distribution over its range.

4.1 Categorical and Ordered Variables

Estimating probability mass functions with discrete variables can be straight-
forward: there are only a finite number of values, and so one just counts how
often they occur and takes the relative frequency. If one has a discrete variable
X and a continuous variable Y and one wants a joint distribution, one could just
get a separate density for Y for each value of x, and tabulate the probabilities
for x.

In principle, this will work, but it can be practically awkward if the number
of levels for the discrete variable is large compared to the number of samples.
Moreover, for the joint distribution problem, it has us estimating completely
separate distributions for Y for every x, without any sharing of information
between them. It would seem more plausible to smooth those distributions
towards each others. To do this, we need kernels for discrete variables.

Several sets of such kernels have been proposed. The most straightforward,
however, are the following. If X is a categorical, unordered variable with c
possible values, then, for 0 ≤ h < 1,

K(x1, x2) =
{

1− h x1 = x2

h/c x 6= xi
(38)

is a valid kernel. For an ordered x,

K(x1, x2) =
(

c

|x1 − x2|

)
h|x1−x2|(1− h)c−|x1−x2| (39)

where |x1 − x2| should be understood as just how many levels apart x1 and x2

are. As h→ 0, both of these become indicators, and return us to simple relative
frequency counting. Both of these are implemented in np.

6In fact, if we want to draw a sample of size q, rnorm(q,sample(x,q,replace=TRUE),h)

will work in R — it’s important hough that sampling be done with replacement (the default
is to not replace).
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4.2 Practicalities

The standard R function density implements one-dimensional kernel density
estimation, defaulting to Gaussian kernels with the rule-of-thumb bandwidth.
There are some options for doing cleverer bandwidth selection, including a plug-
in rule. (See the help file.)

For more sophisticated methods, and especially for more dimensions, you’ll
need to use other packages. The np package estimates joint densities using the
npudens function. (The u is for “unconditional”.) This has the same sort of
automatic bandwidth selection as npreg, using cross-validation. Other packages
which do kernel density estimation include KernSmooth and sm.

Here’s an example of using npudens with variables from the oecdpanel
data set you saw in the homework. We’ll look at the joint density of popgro
(the logarithm of the population growth rate) and inv (the logarithm of the
investment rate). Figure 1 illustrates how to call the command, and a useful
trick where we get np’s plotting function to do our calculations for us, but
then pass the results to a different graphics routine. (See help(npplot).) The
distribution we get has two big modes, one at a comparatively low population
growth rate (≈ −2.9) and high investment (≈ −1.5), and the other at a lower
rate of investment (≈ −2) and higher population grow (≈ −2.6). There is a
third, much smaller mode at high population growth (≈ −2.7) and very low
investment (≈ −4).
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popgro

in
v
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2.0
2.1

popinv <- npudens(~popgro+inv, data=oecdpanel)
fhat <- plot(popinv,plot.behavior="data")
fhat <- fhat$d1
require(lattice)
contourplot(fhat$dens~fhat$eval$Var1*fhat$eval$Var2,cuts=20,xlab="popgro",

ylab="inv",labels=list(cex=0.5))

Figure 1: Gaussian kernel estimate of the joint distribution of logged population
growth rate (popgro) and investment rate (inv). Notice that npudens takes a
formula, but that there is no dependent variable on the left-hand side of the
∼. With objects produced by the np library, one can give the plotting function
the argument plot.behavior — the default is plot, but if it’s set to data (as
here), it calculates all the information needed to plot and returns a separate set
of objects, which can be plotted in other functions. (The value plot-data does
both.) See help(npplot) for more.
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5 Conditional Density Estimation

In addition to estimating marginal and joint densities, we will often want to
get conditional densities. The most straightforward way to get the density of Y
given X, fY |X(y|x), is

f̂Y |X(y|x) =
f̂X,Y (x, y)

f̂X(x)
(40)

i.e., to estimate the joint and marginal densities and divide one by the other.
To be concrete, let’s suppose that we are using a product kernel to estimate

the joint density, and that the marginal density is consistent with it:

f̂X,Y (x, y) =
1

hXhY

n∑
i=1

KX

(
x− xi

hX

)
KY

(
y − yi

hY

)
(41)

f̂X(x) =
1
hX

n∑
i=1

KX

(
x− xi

hX

)
(42)

Thus we need to pick two bandwidths, hX and hY , one for each variable.
This might seem like a solved problem — we just use cross-validation to

find hX and hY so as to minimize the integrated squared error for f̂X,Y , and
then plug in to Equation 40. However, this is a bit hasty, because the optimal
bandwidths for the joint density are not necessarily the optimal bandwidths for
the conditional density. An extreme but easy to understand example is when Y
is actually independent of X. Since the density of Y given X is just the density
of Y , we’d be best off just ignoring X by taking hX = ∞. (In practice, we’d
just use a very big bandwidth.) But if we want to find the joint density, we
would not want to smooth X away completely like this.

The appropriate integrated squared error measure for the conditional density
is ∫

dxfX(x)
∫
dy
(
fY |X(y|x)− f̂Y |X(y|x)

)2

(43)

and this is what we want to minimize by picking hX and hY . The cross-
validation goes as usual.

One nice, and quite remarkable, property of cross-validation for conditional
density estimation is that it can detect and exploit conditional independence.
Say that X = (U, V ), and that Y is independent of V given U — symbolically,
Y |= U |V . Then fY |U,V (y|u, v) = fy|v(y|v), and we should just ignore U in our
estimation of the conditional density. It turns out that when cross-validation
is used to pick bandwidths for conditional density estimation, ĥU → ∞ when
Y |= U |V , but not otherwise (Hall et al., 2004). In other words, cross-validation
will automatically detect which variables are irrelevant, and smooth them away.

5.1 Practicalities

The np package implements kernel conditional density estimation through the
function npcdens. The syntax is pretty much exactly like that of npreg, and
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indeed we can think of estimating the conditional density as a sort of regression,
where the dependent variable is actually a distribution.

To give a concrete example, let’s look at how the distribution of countries’
population growth rates has changed over time, using the oecdpanel data (Fig-
ure 2). The selected bandwidth for year is 10, while that for popgro is 0.048.
(Note that year is being treated as a continuous variable.)

It is noticeable from the figure that the mode for population growth rates
is towards the high end of observed values, but the mode is shrinking and be-
coming less pronounced. The distribution in fact begins as clearly bimodal, but
the smaller mode at the lower growth rate turns into a continuous “shoulder”.
Overall, Figure 2 shows a trend for population growth rates to shrink over time,
and for the distribution of growth rates to become less dispersed.

Let’s expand on this point. One of the variables in oecdpanel is oecd,
which is 1 for countries which are members of the Organization for Economic
Cooperation and Development, and 0 otherwise. The OECD countries are ba-
sically the “developed” ones (stable capitalist democracies). We can include
OECD membership as a conditioning variable for population growth (we need
to use a categorical-variable kernel), and look at the combined effect of time
and development (Figure 3).

What the figure shows is that OECD and non-OECD countries both have
unimodal distributions of growth rates. The mode for the OECD countries
has become sharper, but the value has decreased. The mode for non-OECD
countries has also decreased, while the distribution has become more spread out,
mostly by having more probability of lower growth rates. (These trends have
continued since 1995.) In words, despite the widespread contrary impression,
population growth has actually been slowing for decades in both rich and poor
countries.
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pop.cdens <- npcdens(popgro ~ year,data=oecdpanel)
plotting.grid <- expand.grid(year=seq(from=1965,to=1995,by=1),

popgro=seq(from=-3.5,to=-2.4,length.out=300))
fhat <- predict(pop.cdens,newdata=plotting.grid)
wirefame(fhat~plotting.grid$year*plotting.grid$popgro,scales=list(arrows=FALSE),

xlab="year",ylab="popgro",zlab="pdf")

Figure 2: Conditional density of logarithmic population growth rates as a func-
tion of time.
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pop.cdens.o <- npcdens(popgro~year+factor(oecd),data=oecdpanel)
plotting.grid <- expand.grid(year=seq(from=1965,to=1995,by=1),

popgro=seq(from=-3.4,to=-2.4,length.out=300),
oecd=unique(oecdpanel$oecd))

fhat <- predict(pop.cdens.o,newdata=plotting.grid)
wireframe(fhat~plotting.grid$year*plotting.grid$popgro|plotting.grid$oecd,

scales=list(arrows=FALSE),xlab="year",ylab="popgro",zlab="pdf")

Figure 3: Conditional density of population growth rates given year and OECD
membership. The left panel is countries not in the OECD, the right is ones
which are.
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6 More on the Expected Log-Likelihood Ratio

I want to say just a bit more about the expected log-likelihood ratio
∫
f(x) log f(x)

f̂(x)
dx.

More formally, this is called the Kullback-Leibler divergence or relative
entropy of f̂ from f , and is also written D(f‖f̂). Let’s expand the log ratio:

D(f‖f̂) = −
∫
f(x) log f̂(x)dx+

∫
f(x) log f(x)dx (44)

The second term does not involve the density estimate, so it’s irrelevant for
purposes of optimizing over f̂ . (In fact, we’re just subtracting off the entropy of
the true density.) Just as with the squared error, we could try approximating
the integral with a sum:∫

f(x) log f̂(x)dx ≈ 1
n

n∑
i=1

log f̂(xi) (45)

which is just the log-likelihood per observation. Since we know and like maxi-
mum likelihood methods, why not just use this?

Well, let’s think about what’s going to happen if we plug in the kernel density
estimate:

1
n

n∑
i=1

log

 1
nh

n∑
j=1

K

(
xj − xi

h

) = − log nh+
1
n

n∑
i=1

log

 n∑
j=1

K

(
xj − xi

h

)
(46)

If we take h to be very small, K(xj−xi

h ) ≈ 0 unless xj = xi, so the over-all
likelihood becomes

≈ − log nh+ logK(0) (47)

which goes to +∞ as h → 0. So if we want to maximize the likelihood of a
kernel density estimate, we always want to make the bandwidth as small as
possible. In fact, the limit is to say that the density is

f̃(x) =
1
n

n∑
i=1

δ(x− xi) (48)

where δ is the Dirac delta function.7 Of course this is just what we’d get if we
took the empirical CDF “raw”.

What’s gone wrong here? Why is maximum likelihood failing us? Well, it’s
doing exactly what we asked it to: to find the distribution where the observed

7Recall that the delta function is defined by how it integrates with other functions:∫
δ(x)f(x)dx = f(0). You can imagine δ(x) as zero everywhere except at the origin, where it

has an infinitely tall, infinitely narrow spike, the area under the spike being one. If you are
suspicious that this is really a valid function, you’re right; strictly speaking it’s just a linear
operator on actual functions. We can however approximate it as the limit of well-behaved
functions. For instance, take δh(x) = 1/h when x ∈ [−h/2, h/2] with δh(x) = 0 elsewhere,
and let h go to zero. This is, of course, where we came in.
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sample is as probable as possible. Giving any probability to un-observed values
can only come at the expense of the probability of observed values, so Eq. 48
really is the unrestricted maximum likelihood estimate of the distribution. Any-
thing else imposes some restrictions or constraints which don’t, strictly speaking,
come from the data. However, those restrictions are what let us generalize to
new data, rather than just memorizing the training sample.

One way out of this is to use the cross-validated log-likelihood to pick a
bandwidth, i.e., to restrict the sum in Eq. 45 to running over the testing set only.
This way, very small bandwidths don’t get an unfair advantage for concentrating
around the training set. (If the test points are in fact all very close to the
training points, then small bandwidths get a fair advantage.) This is in fact the
default procedure in the np package, through the bwmethod option ("cv.ml" vs.
"cv.ls").
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Figure 4: Gaussian kernel density estimate for the un-logged population growth
rate and investment rate.

7 Exercises

To think through, not to hand in.
Section 4.2 shows the joint pdf estimate for the variables popgro and inv in

the oecdpanel data. These are the logarithms of the population growth rate
and investment rate. Undoing the logarithms and taking the density,

popinv2 <- npudens(~exp(popgro)+exp(inv),data=oecdpanel)

gives Figure 4

1. Can you reproduce Figure 4?

2. Qualitatively, is this compatible with Figure 1?
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3. How could we use popinv2 to calculate a joint density for popgro and inv
(not exp(popgro) and exp(inv))?

4. Should the density popinv2 implies for those variables be the same as
what we’d get from directly estimating their density with kernels?
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