
Simulation

36-402, Advanced Data Analysis

1 February 2011

Contents

1 What Do We Mean by “Simulation”? 2

2 How Do We Simulate Stochastic Models? 2
2.1 Chaining Together Random Variables 2
2.2 Random Variable Generation . 3

2.2.1 Transformations . 3
2.2.2 Quantile Method . 3
2.2.3 Rejection Method . 4
2.2.4 The Metropolis Algorithm and Markov Chain Monte Carlo 7
2.2.5 Mixtures and Kernel Density Estimates 8
2.2.6 Generating Uniform Random Numbers 9

3 Why Simulate? 13
3.1 Understanding the Model . 13
3.2 Checking the Model . 18

4 The Method of Simulated Moments 25
4.1 The Method of Moments . 25
4.2 Adding in the Simulation . 26
4.3 An Example: Moving Average Models and the Stock Market . . 26

5 Exercises 32

A Some Design Notes on the Method of Moments Code 33
As you may have noticed, we are now seven lectures into a statistics class

and have said almost nothing, so far, about uncertainty. The next lecture will
in fact be about a general and powerful way of quantifying uncertainty in data
analysis, called “bootstrapping”, but we need to do some preliminary work first
today.

You will recall from your previous statistics courses that quantifying uncer-
tainty in statistical inference requires us to get at the sampling distributions

1

of things like estimators. When the very strong simplifying assumptions of ba-
sic statistics courses do not apply1, or when estimators are themselves complex
objects, like kernel regression curves or histograms, there is little hope of being
able to write down sampling distributions in closed form. We get around this by
using simulation to approximate the sampling distributions we can’t calculate.
Today’s lecture, therefore, is all about simulating stochastic models.

1 What Do We Mean by “Simulation”?

A stochastic model is a mathematical story about how the data could have been
generated. Simulating the model means implementing it, step by step, in order
to produce something which should look like the data — what’s sometimes
called synthetic data, or surrogate data, or a realization of the model.
In a stochastic model, some of the steps we need to follow involve a random
component, and so multiple simulations starting from exactly the same initial
conditions will not give exactly the same outputs or realizations. Rather, will
be a distribution over the realizations. Doing large numbers of simulations gives
us a good estimate of this distribution.

For a trivial example, consider a model with three random variables, X1 ∼
N (µ1, σ

2
1), X2 ∼ N (µ2, σ

2
2), with X1 |= X2, and X3 = X1 +X2. Simulating from

this model means drawing a random value from the first normal distribution for
X1, drawing a second random value for X2, and adding them together to get
X3. The marginal distribution of X3, and the joint distribution of (X1, X2, X3),
are implicit in this specification of the model, and we can find them by running
the simulation.

In this particular case, we could also find the distribution of X3, and the
joint distribution, by probability calculations of the kind you learned how to
do in 36-225 and 36-226. For instance, X3 is N (µ1 + µ2, σ

2
1 + σ2

2). These
analytical probability calculations can usually be thought of as just short-cuts
for exhaustive simulations.

2 How Do We Simulate Stochastic Models?

2.1 Chaining Together Random Variables

Stochastic models are usually specified by sets of conditional distributions for
one random variable, given some other variable or variables. For instance, a
simple linear regression model might have the specification

X ∼ N (µx, σ2
1) (1)

Y |X ∼ N (β0 + β1X,σ
2
2) (2)

1In 36-401, you will have seen results about the sampling distribution of linear regression
coefficients when the linear model is true, and the noise is Gaussian with constant variance.
As an exercise, try to get parallel results when the noise has a t distribution with 10 degrees
of freedom.

2

If we knew how to generate a random variable from the distributions given on
the right-hand sides, we could simulate the whole model by chaining together
draws from those conditional distributions. This is in fact the general strat-
egy for simulating any sort of stochastic model, by chaining together random
variables.2

What this means is that we can reduce the problem of simulating to that of
generating random variables.

2.2 Random Variable Generation

2.2.1 Transformations

If we can generate a random variable Z with some distribution, and V = g(Z),
then we can generate V . So one thing which gets a lot of attention is writing
random variables as transformations of one another — ideally as transformations
of easy-to-generate variables.

Example. Suppose we can generate random numbers from the standard
Gaussian distribution Z ∼ N (0, 1). Then we can generate from N (µ, σ2) as
σZ + µ. We can generate χ2 random variables with 1 degree of freedom as Z2.
We can generate χ2 random variables with d degrees of freedom by summing d
independent copies of Z2.

In particular, if we can generate random numbers uniformly distributed be-
tween 0 and 1, we can use this to generate anything which is a transformation
of a uniform distribution. How far does that extend?

2.2.2 Quantile Method

Suppose that we know the quantile function QZ for the random variable X
we want, so that QZ(0.5) is the median of X, QZ(0.9) is the 90th percentile,
and general QZ(p) is bigger than or equal to X with probability p. QZ comes
as a pair with the cumulative distribution function FZ , since

QZ(FZ(a)) = a, FZ(QZ(p)) = p (3)

In the quantile method (or inverse distribution transform method), we
generate a uniform random number U and feed it as the argument to QZ . Now
QZ(U) has the distribution function FZ :

Pr (QZ(U) ≤ a) = Pr (FZ(QZ(U)) ≤ FZ(a)) (4)
= Pr (U ≤ FZ(a)) (5)
= FZ(a) (6)

where the last line uses the fact that U is uniform on [0, 1], and the first line
uses the fact that FZ is a non-decreasing function, so b ≤ a is true if and only
if FZ(b) ≤ FZ(a).

2In this case, we could in principle first generate Y , and then draw from Y |X, but have fun
finding those distributions. Especially have fun if, say, X has a t distribution with 5 degrees
of freedom — a very small change to the specification.

3

Example. The CDF of the exponential distribution with rate λ is 1− e−λx.
The quantile function Q(p) is thus − log (1−p)

λ . (Notice that this is positive,
because 1 − p < 1 and so log (1− p) < 0, and that it has units of 1/λ, which
are the units of x, as it should.) Therefore, if U Unif(0, 1), then − log (1−U)

λ ∼
Exp(λ). This is the method used by rexp().

Example. The Pareto distribution or power law is a two-parameter fam-

ily, f(x;α, x0) = α−1
x0

(
x
x0

)−α
if x ≥ x0, with density 0 otherwise. Integration

shows that the cumulative distribution function is F (x;α, x0) = 1−
(
x
x0

)−α+1

.

The quantile function therefore is Q(p;α, x0) = x0(1− p)−
1

α−1 . (Notice that
this has the same units as x, as it should.)

Example. The standard Gaussian N (0, 1) does not have a closed form for
its quantile function, but there are fast and accurate ways of calculating it
numerically (they’re what stand behind qnorm), so the quantile method can be
used. In practice, there are other transformation methods which are even faster,
but rely on special tricks.

SinceQZ(U) has the same distribution function asX, we can use the quantile
method, as long as we can calculate QZ . Since QZ always exists, in principle
this solves the problem. In practice, we need to calculate QZ before we can use
it, and this may not have a closed form, and numerical approximations may be
in tractable.3

2.2.3 Rejection Method

Another general approach, which avoids needing the quantile function, is the
rejection method. Suppose that we want to generate Z, with probability
density function fZ , and we have a method to generate R, with p.d.f. ρ, called
the proposal distribution. Also suppose that fZ(x) ≤ ρ(x)M , for some
constant M > 1. For instance, if fZ has a limited range [a, b], we could take ρ
to be the uniform distribution on [a, b], and M the maximum density of fZ .

The rejection method algorithm then goes as follows.

1. Generate a proposal R from ρ.

2. Generate a uniform U , independently of R.

3. Is MUρ(R) < fZ(R)?

• If yes, “accept the proposal” by returning R and stopping.

• If no, “reject the proposal”, discard R and U , and go back to (1)

If ρ is uniform, this just amounts to checking whether MU < fZ(R), with M
the maximum density of Z.

Computationally, the idea looks like Example 1.
3In essence, we have to solve the nonlinear equation FZ(x) = p for x over and over — and

that assumes we can easily calculate FZ .

4

rrejection.1 <- function(dtarget,dproposal,rproposal,M) {
rejected <- TRUE
while(rejected) {
R <- rproposal(1)
U <- runif(1)
rejected <- (M*U*dproposal(R) < dtarget(R))

}
return(R)

}

rrejection <- function(n,dtarget,dproposal,rproposal,M) {
replicate(n,rrejection.1(dtarget,dproposal,rproposal,M))

}

Code Example 1: An example of how the rejection method would be used.
The arguments dtarget, dproposal and rproposal would all be functions.
This is not quite industrial-strength code, because it does not let us pass argu-
ments to those functions flexibly. See online code for comments.

One way to understand the rejection method is as follows. Imagine drawing
the curve of fZ(x). The total area under this curve is 1, because

∫
dxfZ(x) = 1.

The area between any two points a and b on the horizontal axis is
∫ b
a
dxfZ(x) =

FZ(b)−FZ(a). It follows that if we could uniformly sample points from the area
between the curve and the horizontal axis, their x coordinates would have ex-
actly the distribution function we are looking for. If ρ is a uniform distribution,
then we are drawing a rectangle which just encloses the curve of fZ , sampling
points uniformly from the rectangle (with x coordinates R and y coordinates
MU), and only keeping the ones which fall under the curve. When ρ is not uni-
form, but we can sample from it nonetheless, then we are uniformly sampling
from the area under Mρ, and keeping only the points which are also below fZ .

Example. The beta distribution, f(x; a, b) = Γ(a+b)
Γ(a)Γ(b)x

a−1(1− x)b−1, is de-
fined on the unit interval4. While its quantile function can be calculated and so
we could use the quantile method, we could also use the reject method, taking
the uniform distribution for the proposals. Figure 1 illustrates how it would go
for the Beta(5,10) distribution

The rejection method’s main drawback is speed. The probability of accepting
on any given pass through the algorithm is 1/M . (Exercise: Why?) Thus
produce n random variables from it takes, on average, nM cycles. (Exercise:
Why?) Clearly, we want M to be as small, which means that we want the
proposal distribution ρ to be close to the target distribution fZ . Of course

4Here Γ(a) =
R∞
0 dxe−xxa−1. It is not obvious, but for integer a, Γ(a) = (a − 1)!. The

distribution gets its name because
Γ(a+b)

Γ(a)Γ(b)
is called the beta function of a and b, a kind of

continuous generalization of
`a+b

a

´
. The beta distribution arises in connection with problems

about minima and maxima, and inference for binomial distributions.

5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

x

db
et

a(
x,

 5
, 1

0)

+
+

+ +

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+ +

+

+

+
+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+
+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

-

-

-

- --

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-
-

-

-

-

-

-
-

-
-

-

-

-

-

-

-

-

-

-

-

-

-

--

-

-
-

-

-

-

-

-
-

-

-

-

-

-

-

-

-

-

-

-

-

-
-

-

- -

-

-

-

-

-

-

-
-

-

-

-

-

-

-

-

-

-

-

-

-
-

-

--

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-
-

-

-

-
-

-

-

-

-

-

-

-

-

-

-

-

-

--

-

-

-

-

-

-

-

-

-
-

-

-

-

-
-

-

-

-

-

-
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-
-

- -

-

-

-

-

-

-

-

-

-

-

-

-

-
-

-

M <- 3.3
curve(dbeta(x,5,10),from=0,to=1,ylim=c(0,M))
r <- runif(300,min=0,max=1)
u <- runif(300,min=0,max=1)
below <- which(M*u*dunif(r,min=0,max=1) <= dbeta(r,5,10))
points(r[below],M*u[below],pch="+")
points(r[-below],M*u[-below],pch="-")

Figure 1: Illustration of the rejection method for generating random numbera
from a Beta(5,10) distribution. The proposal distribution is uniform on the
range of the beta, which is [0, 1]. Points are thus sampled uniformly from the
rectangle which runs over [0, 1] on the horizontal axis and [0, 3.3] on the vertical
axis, i.e., M = 3.3, because the density of the Beta is < 3.3 everywhere. (This
is not the lowest possible M but it is close.) Proposed points which fall below
the Beta’s pdf are marked + and are accepted; those above the pdf curve are
marked − and are rejected. In this case, exactly 70% of proposals are rejected.

6

if we’re using the rejection method because it’s hard to draw from the target
distribution, and the proposal distribution is close to the target distribution, it
may be hard to draw from the proposal.

2.2.4 The Metropolis Algorithm and Markov Chain Monte Carlo

One very important, but tricky, way of getting past the limitations of the re-
jection method is what’s called the Metropolis algorithm. Once again, we
have a density fZ from which we wish to sample. Once again, we introduce a
distribution for “proposals”, and accept or reject proposals depending on the
density fZ . The twist now is that instead of making independent proposals
each time, the next proposal depends on the last accepted value — the proposal
distribution is a conditional pdf ρ(r|z).

Assume for simplicity that ρ(r|z) = rho(z|r). (For instance, we could have a
Gaussian proposal distribution centered on z.) Then the Metropolis algorithm
goes as follows.

1. Start with value Z0 (fixed or random).

2. Generate R from the conditional distribution ρ(·|Zt).

3. Generate a uniform U , independent of R.

4. Is U ≤ fZ(R)/fZ(Zt)?

• If yes, set Zt+1 = R and go to (2)

• If not, set Zt+1 = Zt and go to (2)

Mostly simply, the algorithm is run until t = n, at which point it returns
Z1, Z2, . . . Zn. In practice, better results are obtained if it’s run for n+n0 steps,
and the first n0 values of Z are discarded — this is called “burn-in”.

Notice that if fZ(R) > fZ(Zt), then R is always accepted. The algorithm
always accepts proposals which move it towards places where the density is
higher than where it currently is. If fZ(R) < fZ(Zt), then the algorithm accepts
the move with some probability, which shrinks as the density at R gets lower.
It should not be hard to persuade yourself that the algorithm will spend more
time in places where fZ is high.

It’s possible to say a bit more. Successive values of Zt are dependent on each
other, but Zt+1 |= Zt−1|Zt — this is a Markov process. The target distribution
fZ is in fact exactly the stationary distribution of the Markov process. If the
proposal distributions have broad enough support that the algorithm can get
from any z to any z′ in a finite number of steps, then the process will “mix”. (In
fact we only need to be able to visit points where fZ > 0.) This means that if
we start with an arbitrary distribution for Z0, the distribution of Zt approaches
fZ and stays there — the point of burn-in is to give this convergence time to
happen. The fraction of time Zt is close to x is in fact proportional to fZ(x), so

7

we can use the output of the algorithm as, approximately, so many draws from
that distribution.5

It would seem that the Metropolis algorithm should be superior to the rejec-
tion method, since to produce n random values we need only n steps, or n+ n0

to handle burn-in, not nM steps. However, this is deceptive, because if the
proposal distribution is not well-chosen, the algorithm ends up staying stuck in
the same spot for, perhaps, a very long time. Suppose, for instance, that the
distribution is bimodal. If Z0 starts out in between the modes, it’s easy for it
to move rapidly to one peak or the other, and spend a lot of time there. But
to go from one mode to the other, the algorithm has to make a series of moves,
all in the same direction, which all reduce fZ , which happens but is unlikely.
It thus takes a very long time to explore the whole distribution. The “best”
optimal proposal distribution is make ρ(r|z) = fZ(r), i.e., to just sample from
the target distribution. If we could do that, of course, we wouldn’t need the
Metropolis algorithm, but trying to make ρ close to fZ is generally a good idea.

The original Metropolis algorithm was invented in the 1950s to facilitate
designing the hydrogen bomb. It relies on the assumption that the proposal
distribution is symmetric, ρ(r|z) = ρ(z|r). It is sometimes convenient to allow
an asymmetric proposal distribution, in which case one accepts R if U ρ(R|Zt)

ρ(Zt|R) ≤
fZ(R)
fZ(Zt)

. This is called Metropolis-Hastings. Both are examples of the broader
class of Markov Chain Monte Carlo algorithms, where we give up on getting
independent samples from the target distribution, and instead make the target
the invariant distribution of a Markov process.

2.2.5 Mixtures and Kernel Density Estimates

Some probability distributions can be written as mixtures of other distribu-
tions. That is, the pdf can be written in the form

fZ(x) =
m∑
j=1

wjfj(x) (7)

where the mixing weights are non-negative and add up to 1. In this case, the
problem of generating a random variable from fZ can be decomposed into two
steps. First, pick a random integer J between 1 and m, with probabilities given
by the wj ; then draw from fJ .

Notice that kernel density estimates all have the mixture form, but with all
weights equal to each other. Thus one simulates from a kernel density estimate
by first picking a training point, uniformly at random, and then drawing from
the kernel distribution centered on that training point.

Notice also that histogram estimates have this form, with fj being the uni-
form distribution on the jth bin, and wj the total probability of that bin.

5And if the dependence between Zt and Zt+1 bothers us, we can always randomly permute
them, once we have them.

8

2.2.6 Generating Uniform Random Numbers

Everything previously to this rested on being able to generate uniform random
numbers, so how do we do that? Well, really that’s a problem for computer
scientists. . . But it’s good to understand a little bit about the basic ideas.

First of all, the numbers we get will be produced by some deterministic
algorithm, and so will be merely pseudorandom rather than truly random.
But we would like the deterministic algorithm to produce extremely convoluted
results, so that its output looks random in as many ways that we can test as
possible. Dependencies should be complicated, and correlations between easily-
calculated functions of successive pseudorandom numbers should be small and
decay quickly. (In fact, “truly random” can be defined, more or less, as the limit
of the algorithm becoming infinitely complicated.) Typically, pseudorandom
number generators are constructed to produce a sequence of uniform values,
starting with an initial value, called the seed. In normal operation, the seed is
set from the computer’s clock; when debugging, the seed can be held fixed, to
ensure that results can be reproduced exactly.

Probably the simplest example is incommensurable rotations. Imagine
a watch which fails very slightly, but deterministically, to keep proper time, so
that its second hand advances φ 6= 1 seconds in every real second of time. The
position of the watch after t seconds is

θt = θ0 + tα mod 60 (8)

If φ is commensurable with 60, meaning α/60 = k/m for some integers k,m,
then the positions would just repeat every 60k seconds. If α is incommensu-
rable, because it is an irrational number, then θt never repeats. In this case,
not only does θt never repeat, but it is uniformly distributed between 0 and
60, in the sense that the fraction of time it spends in any sub-interval is just
proportional to the length of the interval. (Exercise: Why?)

You could use this as a pseudo-random number generator, with θ0 as the
seed, but it would not be a very good one, for two reasons. First, exactly
representing an irrational number α on a digital computer is impossible, so at
best you could use a rational number such that the period 60k is large. Second,
and more pointedly, the successive θt are really too close to each other, and
too similar. Even if we only took, say, every 50th value, they’d still be quite
correlated with each other.

One way this has been improved is to use multiple incommensurable rota-
tions. Say we have a second inaccurate watch, φt = φ0 + βt mod 60, where β
is incommensurable with both 60 and with α. We record θt when φt is within
some small window of 0.6

Another approach is to use more aggressively complicated deterministic map-
6The core idea here actually dates back to a medieval astronomer named Nicholas Oresme

in the 1300s, as part of an argument that the universe would not repeat exactly (von Plato,
1994, pp. 279–284).

9

arnold.map <- function(v) {
theta <- v[1]
phi <- v[2]
theta.new <- (theta+phi)%%1
phi.new <- (theta+2*phi)%%1
return(c(theta.new,phi.new))

}

rarnold <- function(n,seed) {
z <- vector(length=n)
for (i in 1:n) {
seed <- arnold.map(seed)
z[i] <- seed[1]

}
return(z)

}

Code Example 2: A function implementing the Arnold cat map (Eq. 10),
and a second function which uses it as a pseudo-random number generator. See
online version for comments.

pings. Take the system

θt+1 = θt + φt mod 1 (9)
φt+1 = θt + 2φt mod 1

This is known as “Arnold’s cat map”, after the great Soviet mathematician V. I.
Arnold, and Figure 2. We can think of this as the second-hand θt advancing not
by a fixed amount α every second, but by a varying amount φt. The variable
φt, meanwhile, advances by the amount φt + θt. The effect of this is that if we
look at only one of the two coordinates, say θt, we get a sequence of numbers
which, while deterministic, is uniformly distributed, and very hard to predict
(Figure 3).

10

Figure 2: Effect of the Arnold cat map. The original image is 300 × 300, and
mapped into the unit square. The cat map is then applied to the coordinates of
each pixel separately, giving a new pixel which inherits the old color. (This can
most easily seen in the transition from the original to time 1.) The original image
re-assembles itself at time 300 because all the original coordinates we multiples
of 1/300. If we had sampled every, say, 32 time-steps, it would have taken much
longer to see a repetition. In the meanwhile, following the x coordinate of a
single pixel from the original image would provide a very creditable sequence of
pseudo-random values. (Figure from Wikipedia, s.v. “Arnold’s cat map”. See
also http://math.gmu.edu/~sander/movies/arnold.html.)

11

http://math.gmu.edu/~sander/movies/arnold.html

Histogram of z

z

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Zt

Z t
+1

par(mfrow=c(2,1))
z <- rarnold(1000,c(0.11124,0.42111))
hist(z,probability=TRUE)
plot(z[-1000],z[-1],xlab=expression(Z[t]),ylab=expression(Z[t+1]))

Figure 3: Left: histogram from 1000 samples of the θ coordinate of the Arnold
cat map, started from (0.11124, 0.42111). Right: scatter-plot of successive values
from the sample, showing that the dependence is very subtle.

12

3 Why Simulate?

There are three major uses for simulation: to understand a model, to check it,
and to fit it.

3.1 Understanding the Model

We understand a model by seeing what it predicts about the variables we care
about, and the relationships between them. Sometimes those predictions are
easy to extract from a mathematical representation of the model, but often
they aren’t. With a model we can simulate, however, we can just run the model
and see what happens.

For instance, at the end of the last set of notes I used kernel density esti-
mation to find the joint density of population growth rates (call that X) and
investment rates (call that Y) from the oecdpanel data:

library(np)
data(oecdpanel)
popinv2 <- npudens(~exp(popgro)+exp(inv),data=oecdpanel)

(See Figure 4 for a visualization.)
Since this is a joint distribution, it implies a certain expected value for Y/X,

the ratio of investment rate to population growth rate7. Extracting this by
direct calculation from popinv2 would not be easy; we’d need to do the integral∫ 1

x=0

dx

∫ 1

y=0

dy
y

x
f̂(x, y) (10)

To find E [Y/X] by simulation, however, we just need to generate samples from
the joint distribution, say (X̃1, Ỹ1), (X̃2, Ỹ2), . . . (X̃T , ỸT), and average:

1
T

T∑
i=1

Ỹi

X̃i

= g̃T
T→∞−→ E

[
Y

X

]
(11)

where the convergence happens because that’s the law of large numbers. If the
number of simulation points T is big, then g̃T ≈ E [Y/X]. How big do we need
to make T? Use the central limit theorem:

g̃T N (E [Y/X] ,Var [g̃1] /
√
T) (12)

How do we find the variance Var [g̃1]? We approximate it by simulating.
Let’s be very concrete about this. Code Example 3 is a function which draws

a sample from the fitted kernel density estimate. First let’s check that it works,
by giving it something easy to do, namely reproducing the means, which we can
work out:

7Economically, we might want to know this because it would tell us about how quickly the
capital stock per person grows.

13

population growth rate

in
ve

st
m

en
t r

at
e

0.1

0.2

0.3

0.04 0.05 0.06 0.07 0.08

10

10

10

20

20

30

40
50

60

7080

80

90

90

100

10
0

110 110

120

120

130

130140
150

160

160

170

170

180

180

190

190

200

Figure 4: Contour plot of popinv2, the estimated joint density of population
growth rate and investment rate. See the notes to lecture 6 for the plotting
commands.

14

rpopinv <- function(n) {
n.train <- length(popinv2$dens)
ndim <- popinv2$ndim
points <- sample(1:n.train,size=n,replace=TRUE)
z <- matrix(0,nrow=n,ncol=ndim)
for (i in 1:ndim) {
coordinates <- popinv2$eval[points,i]
z[,i] <- rnorm(n,coordinates,popinv2$bw[i])

}
colnames(z) <- c("pop.growth.rate","invest.rate")
return(z)

}

Code Example 3: Sampling from the fitted kernel density estimate popinv2.
Can you see how to modify it to sample from other bivariate density estimates
produced by npudens? From higher-dimensional distributions?

> mean(exp(oecdpanel$popgro))
[1] 0.06930789
> mean(exp(oecdpanel$inv))
[1] 0.1716247
> colMeans(rpopinv(200))
pop.growth.rate invest.rate

0.06865678 0.17623612

This is pretty satisfactory for only 200 samples, so the simulator seems to be
working. Now we just use it:

> z <- rpopinv(2000)
> mean(z[,"invest.rate"]/z[,"pop.growth.rate"])
[1] 2.597916
> sd(z[,"invest.rate"]/z[,"pop.growth.rate"])/sqrt(2000)
[1] 0.0348991

So this tells us that E [Y/X] ≈ 2.59, with a standard error of ±0.035.
Suppose we want not the mean of Y/X but the median?

> median(z[,"invest.rate"]/z[,"pop.growth.rate"])
[1] 2.31548

Getting the whole distribution of Y/X is not much harder (Figure 5). Of course
complicated things like distributions converge more slowly than simple things
like means or medians, so we want might want to use more than 2000 simulated
values for the distribution. Alternately, we could repeat the simulation many
times, and look at how much variation there is from one realization to the next
(Figure 6).

Of course, if we are going to do multiple simulations, we could just average
them together. Say that g̃

(1)
T , g̃(2)

T , . . . g̃(s)
T are estimates of our statistic of

15

0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Y/X

P
ro

ba
bi

lit
y

de
ns

ity

YoverX <- z[,"invest.rate"]/z[,"pop.growth.rate"]
plot(density(YoverX),xlab="Y/X",ylab="Probability density",main="")
rug(YoverX,side=1)

Figure 5: Distribution of Y/X implied by the joint density estimate popinv2.

interest from s independent realizations of the model, each of size T . We can
just combine them into one grand average:

g̃s,T =
1
s

s∑
i=1

g̃
(1)
T (13)

As an average of IID quantities, the variance of g̃s,T is 1/s times the variance
of g̃(1)

T .
By this point, we are getting the sampling distribution of the density of a

nonlinear transformation of the variables in our model, with no more effort than
calculating a mean. In the next lecture, we will see some of the things which
can be accomplished when we can get complicated sampling distributions easily
by simulation.

16

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Y/X

P
ro

ba
bi

lit
y

de
ns

ity

plot(0,xlab="Y/X",ylab="Probability density",type="n",xlim=c(-1,10),
ylim=c(0,0.3))

one.plot <- function() {
zprime <- rpopinv(2000)
YoverXprime <- zprime[,"invest.rate"]/zprime[,"pop.growth.rate"]
density.prime <- density(YoverXprime)
lines(density.prime,col="grey")

}
invisible(replicate(50,one.plot()))

Figure 6: Showing the sampling variability in the distribution of Y/X by “over-
plotting”. Each line is a distribution from an estimated sample of size 2000, as
in Figure 5; here 50 of them are plotted on top of each other. The thickness of
the bands indicates how much variation there is from simulation to simulation
at any given value of Y/X. (Setting the type of the initial plot to n, for
“null”, creates the plotting window, axes, legends, etc., but doesn’t actually
plot anything.)

17

3.2 Checking the Model

An important but under-appreciated use for simulation is to check models after
they have been fit. If the model is right, after all, it represents the mechanism
which generates the data. This means that when we simulate, we run that mech-
anism, and the surrogate data which comes out of the machine should look like
the real data. More exactly, the real data should look like a typical realization
of the model. If it does not, then the model’s account of the data-generating
mechanism is systematically wrong in some way. By carefully choosing the sim-
ulations we perform, we can learn a lot about how the model breaks down and
how it might need to be improved.8

Often the comparison between simulations and data can be done qualita-
tively and visually. Take, for instance, the data on eruptions of Old Faithful
which you worked with in homework 2. In the homework, you fit a regression
line to the data by ordinary least squares:

library(MASS)
data(geyser)
fit.ols <- lm(waiting~duration,data=geyser)

Figure 7 shows the data, together with the OLS regression line. It doesn’t look
that great, but if someone insisted it was a triumph of quantitative vulcanology,
how could you show they were wrong?

Well, OLS is usually presented as part of a probability model for the response
conditional on the input, with Gaussian and homoskedastic noise. In this case,
the probability model is waiting = β0 + β1duration+ ε, with ε ∼ N (0, σ2). If
we simulate from this probability model, we’ll get something we can compare to
the actual data, to help us assess whether the scatter around that regression line
is really bothersome. Since OLS doesn’t require us to assume a distribution for
the input variable (here, duration), the simulation function in Code Example
4 leaves those values alone, but regenerates values of the response (waiting)
according the model assumptions.

A useful principle for model checking is that if we do some exploratory data
analyses of the real data, doing the same analyses to realizations of the model
should give roughly the same results. This isn’t really the case here. Figure 8
shows the actual density of waiting, plus the density produced by simulating
— reality is clearly bimodal, but the model is unimodal. Similarly, Figure 9
shows the real data, the OLS line, and a simulation from the OLS model. It’s
visually clear that the deviations of the real data from the regression line are
both bigger and more patterned than those we get from simulating the model,
so something is wrong with the latter.

By itself, just seeing that data doesn’t look like a realization of the model
isn’t super informative, since we’d really like to know how the model’s broken,
and how to fix it. Further simulations, comparing analyses of the data to anal-
yses of the simulation output, are often very helpful here. Looking at Figure

8“Might”, because sometimes we’re better off with a model that makes systematic mistakes,
if they’re small and getting it right would be a hassle.

18

1 2 3 4 5

50
60

70
80

90
10
0

11
0

duration

w
ai
tin
g

plot(geyser$duration,geyser$waiting,xlab="duration",ylab="waiting")
abline(fit.ols)

Figure 7: Data for the geyser data set, plus the OLS regression line.

rgeyser <- function() {
n <- nrow(geyser)
sigma <- summary(fit.ols)$sigma
new.waiting <- rnorm(n,mean=fitted(fit.ols),sd=sigma)
new.geyser <- data.frame(duration=geyser$duration,

waiting=new.waiting)
return(new.geyser)

}

Code Example 4: Function for generating surrogate data sets from the linear
model fit to geyser.

19

40 60 80 100 120

0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.
02
0

0.
02
5

0.
03
0

waiting

D
en
si
ty

plot(density(geyser$waiting),xlab="waiting",main="",sub="")
lines(density(rgeyser()$waiting),lty=2)

Figure 8: Actual density of the waiting time between eruptions (solid curve) an
that produced by simulating the OLS model (dashed).

9, we might suspect that one problem is heteroskedasticity9. In the homework,
you estimated a conditional variance function,

library(np)
var1 <- npreg(residuals(fit.ols)^2 ~ geyser$duration)

which is plotted in Figure 10, along with the (constant) variance function of the
OLS model.

The estimated variance function var1 does not look particularly flat, but
it comes from applying a fairly complicated procedure (kernel smoothing with
data-driven bandwidth selection) to a fairly limited amount of data (299 obser-
vations). Maybe that’s the amount of wiggliness we should expect to see due to
finite-sample fluctuations? To rule this out, we can make surrogate data from
the homoskedastic model, treat it the same way as the real data, and plot the
resulting variance functions (Figure 11).

These comparisons have been qualitative, but one could certainly be more
quantitative about this. For instance, one might measure heteroskedasticity
by, say, evaluating the conditional variance at all the data points, and looking
at the ratio of the interquartile range to the median. This would be zero for
perfect homoskedasticity, and grow as the dispersion of actual variances around
the “typical” variance increased. For the data, this is 111

129 = 0.86. Simulations
from the OLS model give values around 10−15.

9At the very least, homework 2 should have planted that idea in your mind.

20

1 2 3 4 5

50
60

70
80

90
10
0

11
0

duration

w
ai
tin
g

plot(geyser$duration,geyser$waiting,xlab="duration",ylab="waiting")
abline(fit.ols)
points(rgeyser(),pch=20,cex=0.5)

Figure 9: As in Figure 7, plus one realization of simulating the OLS model
(small black dots).

21

1 2 3 4 5

50
10
0

15
0

20
0

geyser$duration

 re
si

du
al

s(
fit

.o
ls

)^
2

plot(var1,xlab="duration",ylab="Conditional variance of waiting time")
abline(h=summary(fit.ols)$sigma^2,lty=2)

Figure 10: Conditional variance function estimated from the residuals of
fit.ols, together with the constant variance function assumed by that model
(dashed line).

22

1 2 3 4 5

50
10
0

15
0

20
0

geyser$duration

 re
si

du
al

s(
fit

.o
ls

)^
2

plot(var1)
abline(h=summary(fit.ols)$sigma^2,lty=2)
duration.grid <- seq(from=min(geyser$duration),to=max(geyser$duration),

length.out=300)
one.var.func <- function() {
fit <- lm(waiting ~ duration, data=rgeyser())
var.func <- npreg(residuals(fit)^2 ~ geyser$duration)
lines(duration.grid,predict(var.func,exdat=duration.grid),col="grey")

}
invisible(replicate(10,one.var.func()))

Figure 11: As in Figure 10, but with variance functions estimated from simula-
tions of the OLS model added in grey.

23

There is nothing particularly special about this measure of heteroskedastic-
ity. (After all, I just made it up.) Whenever we hve some sort of quantittive
summary statistic we can calculate on our real data, we can also calculate the
same statistic on realizations of the model. The difference will then tell us
something about how close the simulations come to the data.

24

4 The Method of Simulated Moments

Checking whether the model’s simulation output looks like the data naturally
suggests the idea of adjusting the model until it does. This becomes a way
of estimating the model — in the jargon, simulation-based inference. All
forms of this involve adjusting parameters of the model until the simulations do
look like the data. They differ in what “look like” means, concretely. The most
straightforward form of simulation-based inference is the method of simulated
moments.

4.1 The Method of Moments

You will have seen the ordinary method of moments in earlier statistics
classes. Let’s recall the general setting. We have a model with a parameter
vector θ, and pick a vector m of moments to calculate. The moments, like the
expectation of any variables, are functions of the parameters,

m = g(θ) (14)

for some function g. If that g is invertible, then we can recover the parameters
from the moments,

θ = g−1(m) (15)

The method of moments estimator takes the observed, sample moments m̂, and
plugs them into Eq. 15:

θ̂MM = g−1(m̂) (16)

What if g−1 is hard to calculate — if it’s hard to explicitly solve for parameters
from moments? In that case, we can use minimization:

θ̂MM = argmin
θ
‖g(θ)− m̂‖2 (17)

For the minimization version, we just have to calculate moments from parame-
ters g(θ), not vice versa. To see that Eqs. 16 and 17 do the same thing, notice
that (i) the squared10 distance ‖g(θ)− m̂‖2 ≥ 0, (ii) the distance is only zero
when the moments are matched exactly, and (iii) there is only θ which will
match the moments.

In either version, the method of moments works statistically because the
sample moments m̂ converge on their expectations g(θ) as we get more and
more data. This is, to repeat, a consequence of the law of large numbers.

It’s worth noting that nothing in this argument says that m has to be a
vector of moments in the strict sense. They could be expectations of any func-
tions of the random variables, so long as g(θ) is invertible, we can calculate the
sample expectations of these functions from the data, and the sample expec-
tations converge. When m isn’t just a vector of moments, then, we have the
generalized method of moments.

10Why squared? Basically because it makes the function we’re minimizing smoother, and
the optimization nicer.

25

It is also worth noting that there’s a somewhat more general version of the
same method, where we minimize

(g(θ)− m̂) ·w (g(θ)− m̂) (18)

with some positive-definite weight matrix w. This can help if some of the
moments are much more sensitive to the parameters than others. But this goes
beyond what we really need here.

4.2 Adding in the Simulation

All of this supposes that we know how to calculate g(θ) — that we can find the
moments exactly. Even if this is too hard, however, we could always simulate
to approximate these expectations, and try to match the simulated moments to
the real ones. Rather than Eq. 17, the estimator would be

θ̂SMM = argmin
θ
‖g̃s,T (θ)− m̂‖2 (19)

with s being the number of simulation paths and T being their size. Now consis-
tency requires that g̃ → g, either as T grows or s or both, but this is generally
assured by the law of large numbers, as we talked about earlier. Simulated
method of moments estimates like this are generally more uncertain than ones
which don’t rely on simulation, since it introduces an extra layer of approxima-
tion, but this can be reduced by increasing s.11

4.3 An Example: Moving Average Models and the Stock
Market

To give a concrete example, we will try fitting a time series model to the stock
market: it’s a familiar subject which interests most students, and we can check
the method of simulated moments here against other estimation techniques.12

Our data will consist of about ten year’s worth of daily values for the S& P
500 stock index, available on the class website:

sp <- read.csv("SPhistory.short.csv")
We only want closing prices
sp <- sp[,7]
The data are in reverse chronological order, which is weird for us
sp <- rev(sp)
And in fact we only want log returns, i.e., difference in logged prices
sp <- diff(log(sp))

11A common trick is to fix T at the actual sample size n, and then to increase s as much as
computationally feasible. By looking at the variance of g̃ across different runs of the model
with the same θ, one gets an idea of how much uncertainty there is in m̂ itself, and so of how
precisely one should expect to be able to match it. If the optimizer has gotten |g̃(θ)−m̂| down
to 0.02, and the standard deviation of g̃ at constant θ is 0.1, further effort at optimization is
probably wasted.

12Nothing in what follows, or in the homework, could actually be used to make money,
however.

26

Professionals in finance do not care so much about the sequence of prices Pt, as
the sequence of returns, Pt−Pt−1

Pt−1
. This is because making $1000 is a lot better

when you invested $1000 than when you invested $1,000,000, but 10% is 10%.
In fact, it’s often easier to deal with the log returns, Xt = log Pt

Pt−1
, as we do

here.
The model we will fit is a first-order moving average, or MA(1), model:

Xt = Zt + θZt−1 (20)
Zt ∼ N (0, σ2) i.i.d. (21)

The Xt sequence of variables are the returns we see; the Zt variables are invisible
to us. The interpretation of the model is as follows. Prices in the stock market
change in response to news that affects the prospects of the companies listed, as
well as news about changes in over-all economic conditions. Zt represents this
flow of news, good and bad. It makes sense that Zt is uncorrelated, because
the relevant part of the news is only what everyone hadn’t already worked out
from older information13. However, it does take some time for the news to be
assimilated, and this is why Zt−1 contributes to Xt. A negative contribution,
θ < 0, would seem to indicate a “correction” to the reaction to the previous
day’s news.

Mathematically, notice that since Zt and θZt−1 are independent Gaussians,
Xt is a Gaussian with mean 0 and variance σ2+θ2σ2. The marginal distribution
of Xt is therefore the same for all t. For technical reasons14, we can really only
get sensible behavior from the model when −1 ≤ θ ≤ 1.

There are two parameters, θ and σ2, so we need two moments for estimation.
Let’s try Var [Xt] and Cov [Xt, Xt−1].

Var [Xt] = Var [Zt] + θ2Var [Zt−1] (22)
= σ2 + θ2σ2 (23)
= σ2(1 + θ2) ≡ v(θ, σ) (24)

(This agrees with our earlier reasoning about Gaussians, but doesn’t need it.)

Cov [Xt, Xt−1] = E [(Zt + θZt−1)(Zt−1 + θZt−2)] (25)
= θE

[
Z2
t−1

]
(26)

= θσ2 ≡ c(θ, σ) (27)

We can solve the system of equations for the parameters, starting with elim-
13Nobody will ever say “What? It’s snowing in Pittsburgh in February? I must call my

broker!”
14Think about trying to recover Zt, if we knew θ. One might try Xt−θXt−1, which is almost

right, it’s Zt + θZt−1 − θZt−1 − θ2Zt−2 = Zt − θ2Zt−2. Similarly, Xt − θXt−1 + θ2Xt−2 =
Zt + θ3Zt−2, and so forth. If |θ| < 1, then this sequence of approximations will converge on
Zt; if not, then not. It turns out that models which are not “invertible” in this way are very
strange — see Shumway and Stoffer (2000).

27

inating σ2:

c(θ, σ)
v(θ, σ)

=
σ2θ

σ2(1 + θ2)
(28)

=
θ

1 + θ2
(29)

0 = θ2 c

v
− θ +

c

v
(30)

This is a quadratic in θ,

θ =
1±

√
1− 4 c2v2

2c/v
(31)

and it’s easy to confirm15 that this has only one solution in the meaningful
range, −1 ≤ θ ≤ 1. Having found θ, we solve for σ2,

σ2 = c/θ (32)

The method of moments estimator takes the sample values of these moments,
v̂ and ĉ, and plugs them in to Eqs. 31 and 32. With the S& P returns, the sample
covariance is −1.61× 10−5, and the sample variance 1.96× 10−4. This leads to
θ̂MM = −8.28× 10−2, and σ̂2

MM = 1.95× 10−4. In terms of the model, then,
each day’s news has a follow-on impact on prices which is about 8% as large as
its impact the first day, but with the opposite sign.16

If we did not know how to solve a quadratic equation, we could use the
minimization version of the method of moments estimator:[

θ̂MM

σ̂2
MM

]
= argmin

θ,σ2

∥∥∥∥ σ2θ − ĉ
σ2(1 + θ2)− v̂

∥∥∥∥2

(33)

Computationally, it would go something like Code Example 5.
The parameters estimated by minimization agree with those from direct

algebra to four significant figures, which I hope is good enough to reassure you
that this works.

Before we can try out the method of simulated moments, we have to figure
out how to simulate our model. Xt is a deterministic function of Zt and Zt−1,
so our general strategy says to first generate the Zt, and then compute Xt from
that. But here the Zt are just a sequence of independent Gaussians, which is
a solved problem for us. The one wrinkle is that to get our first value X1, we
need a previous value Z0. Code Example 6 shows the solution.

What we need to extract from the simulation are the variance and the co-
variance. It will be more convenient to have functions which calculate these call
rma() themselves (Code Example 7).

15For example, plot c/v as a function of θ, and observe that any horizontal line cuts the
graph at only one point.

16It would be natural to wonder whether θ̂MM is really significantly different from zero.

28

ma.mm.est <- function(c,v) {
theta.0 <- c/v
sigma2.0 <- v
fit <- optim(par=c(theta.0,sigma2.0), fn=ma.mm.objective,

c=c, v=v)
return(fit)

}

ma.mm.objective <- function(params,c,v) {
theta <- params[1]
sigma2 <- params[2]
c.pred <- theta*sigma2
v.pred <- sigma2*(1+theta^2)
return((c-c.pred)^2 + (v-v.pred)^2)

}

Code Example 5: Code for implementing method of moments estimation of
a first-order moving average model, as in Eq. 33. See Appendix A for “design
notes”, and the online code for comments.

rma <- function(n,theta,sigma2,s=1) {
z <- replicate(s,rnorm(n=n+1,mean=0,sd=sqrt(sigma2)))
x <- z[-1,] + theta*z[-(n+1),]
return(x)

}

Code Example 6: Function which simulates s independent runs of a first-
order moving average model, each of length n, with given noise variance sigma2
and after-effect theta. See lecture-07.R for the version with comments on the
code details.

sim.var <- function(n,theta,sigma2,s=1) {
vars <- apply(rma(n,theta,sigma2,s),2,var)
return(mean(vars))

}

sim.cov <- function(n,theta,sigma2,s=1) {
x <- rma(n,theta,sigma2,s)
covs <- colMeans(x[-1,]*x[-n,])
return(mean(covs))

}

Code Example 7: Functions for calculating the variance and covariance for
specified parameter values from simulations.

29

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

θ

C
ov
ar
ia
nc
e

-1.0 -0.5 0.0 0.5 1.0

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

θ

V
ar
ia
nc
e

-1.0 -0.5 0.0 0.5 1.0

-0
.4

-0
.2

0.
0

0.
2

0.
4

θ

R
at

io
 o

f c
ov

ar
ia

nc
e

to
 v

ar
ia

nc
e

theta.grid <- seq(from=-1,to=1,length.out=300)
cov.grid <- sapply(theta.grid,sim.cov,sigma2=1,n=length(sp),s=10)
plot(theta.grid,cov.grid,xlab=expression(theta),ylab="Covariance")
abline(0,1,col="grey",lwd=3)
var.grid <- sapply(theta.grid,sim.var,sigma2=1,n=length(sp),s=10)
plot(theta.grid,var.grid,xlab=expression(theta),ylab="Variance")
curve((1+x^2),col="grey",lwd=3,add=TRUE)
plot(theta.grid,cov.grid/var.grid,xlab=expression(theta),
ylab="Ratio of covariance to variance")

curve(x/(1+x^2),col="grey",lwd=3,add=TRUE)

Figure 12: Plots of the covariance, the variance, and their ratio as a function of
θ, with σ2 = 1. Dots show simulation values (averaging 10 realizations each as
long as the data), the grey curves the exact calculations.

30

ma.msm.est <- function(c,v,n,s) {
theta.0 <- c/v
sigma2.0 <- v
fit <- optim(par=c(theta.0,sigma2.0),fn=ma.msm.objective,c=c,v=v,n=n,s=s)
return(fit)

}

ma.msm.objective <- function(params,c,v,n,s) {
theta <- params[1]
sigma2 <- params[2]
c.pred <- sim.cov(n,theta,sigma2,s)
v.pred <- sim.var(n,theta,sigma2,s)
return((c-c.pred)^2 + (v-v.pred)^2)

}

Code Example 8: Code for implementing the method of simulated moments
estimation of a first-order moving average model.

Figure 12 plots the covariance, the variance, and their ratio as functions
of θ with σ2 = 1, showing both the values obtained from simulation and the
theoretical ones.17 The agreement is quite good, though of course not quite
perfect.18

Conceptually, we could estimate θ by jut taking the observed value ĉ/v̂,
running a horizontal line across Figure 12c, and seeing at what θ it hit one of
the simulation dots. Of course, there might not be one it hits exactly...

The more practical approach is Code Example 8. The code is practically
identical to that in Code Example 5, except that the variance and covariance
predicted by given parameter settings now come from simulating those settings,
not an exact calculation. Also, we have to say how long a simulation to run,
and how many simulations to average over per parameter value.

When I run this, with s=100, I get θ̂MSM = −8.36 × 10−2 and σ̂2
MSM =

1.94 × 10−4, which is quite close to the non-simulated method of moments
estimate. In fact, in this case there is actually a maximum likelihood estimator
(arima(), after the more general class of models including MA models), which
claims θ̂ML = −9.75 × 10−2 and σ̂2

ML = 1.94× 10−4. Since the standard error

Assuming Gaussian noise, one could, in principle, calculate the probability that even though
θ = 0, by chance ĉ/v̂ was so far from zero as to give us our estimate. As you will see in the
homework, however, Gaussian assumptions are very bad for this data. In the next lecture, we
will see some techniques which let us answer this very robustly.

17I could also have varied σ2 and made 3D plots, but that would have been more work.
Also, the variance and covariance are both proportional to σ2, so the shapes of the figures
would all be the same.

18If you look at those figures and think “Why not do a nonparametric regression of the
simulated moments against the parameters and use the fitted values as g̃, it’ll get rid of some
of the simulation noise?”, congratulations, you’ve just discovered the smoothed method of
simulated moments.

31

of the MLE on θ is ±0.02, this is working essentially as well as the method of
moments, or even the method of simulated moments.

In this case, because there is a very tractable maximum likelihood estimator,
one generally wouldn’t use the method of simulated moments. But we can in
this case check whether it works (it does), and so we can use the same technique
for other models, where an MLE is unavailable.

5 Exercises

To think through, not to hand in.
Section 4 explained the method of simulated moments, where we try to

match expectations of various functions of the data. Expectations of functions
are summary statistics, but they’re not the only kind of summary statistics. We
could try to estimate our model by matching any set of summary statistics, so
long as (i) there’s a unique way of mapping back from summaries to parameters,
and (ii) estimates of the summary statistics converge as we get more data.

A powerful but somewhat paradoxical version of this is what’s called indi-
rect inference, where the summary statistics are the parameters of a different
model. This second or auxiliary model does not have to be correctly specified,
it just has to be easily fit to the data, and satisfy (i) and (ii) above. Say the
parameters of the auxiliary model are β, as opposed to the θ of our real model.
We calculate β̂ on the real data. Then we simulate from different values of
θ, fit the auxiliary to the simulation outputs, and try to match the auxiliary
estimates. Specifically, the indirect inference estimator is

θ̂II = argmin
θ
‖β̃(θ)− β̂‖2 (34)

where β̃(θ) is the value of β we estimate from a simulation of θ, of the same size
as the original data. (We might average together a couple of simulation runs
for each θ.) If we have a consistent estimator of β, then

β̂ → β (35)
β̃(θ) → b(θ) (36)

If in addition b(θ) is invertible, then

θ̂II → θ (37)

For this to work, the auxiliary model needs to have at least as many pa-
rameters as the real model, but we can often arrange this by, say, making the
auxiliary model a linear regression with a lot of coefficients.

A specific case, often useful for time series, is to make the auxiliary model
an autoregressive model, where each observation is linearly regressed on the
previous ones. A first-order autoregressive model (or “AR(1)”) is

Xt = β0 + β1Xt−1 + εt (38)

where εt ∼ N (0, β3). (So an AR(1) has three parameters.)

32

1. Convince yourself that if Xt comes from an MA(1) process, it can’t also
be written as an AR(1) model.

2. Write a function, ar1.fit, to fit an AR(1) model to a time series, using
lm, and to return the three parameters (intercept, slope, noise variance).

3. Apply ar1.fit to the S&P 500 data; what are the auxiliary parameter
estimates?

4. Combine ar1.fit with the simulator rma, and plot the three auxiliary
parameters as functions of θ, holding σ2 fixed at 1. (This is analogous to
Figure 12.)

5. Write functions, analogous to ma.msm.est and ma.msm.objective, for es-
timating an MA(1) model, using an AR(1) model as the auxiliary function.
Does this recover the right parameter values when given data simulated
from an MA(1) model?

6. What values does your estimator give for θ and σ2 on the S& P 500 data?
How do they compare to the other estimates?

A Some Design Notes on the Method of Mo-
ments Code

Go back to Section 4.3 and look at the code for the method of moments.
There’ve been a fair amount of questions about writing code, and this is a
useful example.

The first function, ma.mm.est, estimates the parameters taking as inputs
two numbers, representing the covariance and the variance. The real work is
done by the built-in optim function, which itself takes two major arguments.
One, fn, is the function to optimize. Another, par, is an initial guess about the
parameters at which to begin the search for the optimum.19

The fn argument to optim must be a function, here ma.mm.objective. The
first argument to that function has to be a vector, containing all the parameters
to be optimized over. (Otherwise, optim will quit and complain.) There can be
other arguments, not being optimized over, to that function, which optim will
pass along, as you see here. optim will also accept a lot of optional arguments
to control the search for the optimum — see help(optim).

All ma.mm.objective has to do is calculate the objective function. The
first two lines peel out θ and σ2 from the parameter vector, just to make it
more readable. The next two lines calculate what the moments should be. The
last line calculates the distance between the model predicted moments and the
actual ones, and returns it. The whole thing could be turned into a one-line,
like

19Here par is a very rough guess based on c and v — it’ll actually be right when c=0, but
otherwise it’s not much good. Fortunately, it doesn’t have to be! Anyway, let’s return to
designing the code

33

return(t(params-c(c,v)) %*% (params-c(c,v)))

or perhaps even more obscure, but that is usually a bad idea.
Notice that I could write these two functions independently of one another,

at least to some degree. When writing ma.mm.est, I knew I would need the
objective function, but all I needed to know about it was its name, and the
promise that it would take a parameter vector and give back a real number.
When writing ma.mm.objective, all I had to remember about the other func-
tion was the promise this one needed to fulfill. In my experience, it is usually
easiest to do any substantial coding in this “top-down” fashion20. Start with
the high-level goal you are trying to achieve, break it down into a few steps,
write something which will put those steps together, presuming other functions
or programs can do them. Now go and write the functions to do each of those
steps.

The code for the method of simulated moments is entirely parallel to these.
Writing it as two separate pairs of functions is therefore somewhat wasteful. If
I find a mistake in one pair, or thing of a way to improve it, I need to remember
to make corresponding changes in the other pair (and not introduce a new
mistake). In the long run, when you find yourself writing parallel pieces of code
over and over, it is better to try to pull together the common parts and write
them once. Here, that would mean something like one pair of functions, with
the inner one having an argument which controlled whether to calculate the
predicted moments by simulation or by a formula. You may try your hand at
writing this.

References

Shumway, Robert H. and David S. Stoffer (2000). Time Series Analysis and Its
Applications. Springer Texts in Statistics. New York: Springer-Verlag.

von Plato, Jan (1994). Creating Modern Probability: Its Mathematics, Physics
and Philosophy in Historical Perspective. Cambridge, England: Cambridge
University Press.

20What qualifies as “substantial coding” depends on how much experience you have

34

	What Do We Mean by ``Simulation''?
	How Do We Simulate Stochastic Models?
	Chaining Together Random Variables
	Random Variable Generation
	Transformations
	Quantile Method
	Rejection Method
	The Metropolis Algorithm and Markov Chain Monte Carlo
	Mixtures and Kernel Density Estimates
	Generating Uniform Random Numbers

	Why Simulate?
	Understanding the Model
	Checking the Model

	The Method of Simulated Moments
	The Method of Moments
	Adding in the Simulation
	An Example: Moving Average Models and the Stock Market

	Exercises
	Some Design Notes on the Method of Moments Code

