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1 Testing Functional Forms

One important, but under-appreciated, use of nonparametric regression is in
testing whether parametric regressions are well-specified.

The typical parametric regression model is something like

Y = f(X; θ) + ε (1)

where f is some function which is completely specified except for the adjustable
parameters θ, and ε, as usual, is uncorrelated noise. Usually, but not necessarily,
people use a function f that is linear in the variables in X, or perhaps includes
some interactions between them.

How can we tell if the specification is right? If, for example, it’s a linear
model, how can we check whether there might not be some nonlinearity? One
common approach is to modify the specification by adding in specific departures
from the modeling assumptions — say, adding a quadratic term — and seeing
whether the coefficients that go with those terms are significantly non-zero, or
whether the improvement in fit is significant.1 For example, one might compare
the model

Y = θ1x1 + θ2x2 + ε (2)

to the model
Y = θ1x1 + θ2x2 + θ3x

2
1 + ε (3)

1In my experience, this is second in popularity only to ignoring the issue.
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by checking whether the estimated θ3 is significantly different from 0, or whether
the residuals from the second model are significantly smaller than the residuals
from the first.

This can work, if you have chosen the right nonlinearity to test. It has the
power to detect certain mis-specifications, if they exist, but not others. (What
if the departure from linearity is not quadratic but cubic?) If you have good
reasons to think that when the model is wrong, it can only be wrong in certain
ways, fine; if not, though, why only check for those errors?

Nonparametric regression effectively lets you check for all kinds of system-
atic errors, rather than singling out a particular one. There are three basic
approaches, which I give in order of increasing sophistication.

• If the parametric model is right, it should predict as well as, or even better
than, the non-parametric one, and we can check whether MSEp(θ̂) −
MSEnp(r̂) is sufficiently small.

• If the parametric model is right, the non-parametric estimated regression
curve should be very close to the parametric one. So we can check whether
f(x; θ̂)− r̂(x) is approximately zero everywhere.

• If the parametric model is right, then its residuals should be patternless
and independent of input features, because

E [Y − f(x; θ)|X] = E [f(x; θ) + ε− f(x; θ)|X] = E [ε|X] = 0

So we can apply non-parametric smoothing to the parametric residuals,
y− f(x; θ̂), and see if their expectation is approximately zero everywhere.

We’ll stick with the first procedure, because it’s simpler for us to implement
computationally. However, it turns out to be easier to develop theory for the
other two, and especially for the third — see Li and Racine (2007, ch. 12), or
Hart (1997).

Here is the basic procedure.

1. Get data (x1, y1), (x2, y2), . . . (xn, yn).

2. Fit the parametric model, getting an estimate θ̂, and in-sample mean-
squared error MSEp(θ̂).

3. Fit your favorite nonparametric regression (using cross-validation to pick
control settings as necessary), getting curve r̂ and in-sample mean-squared
error MSEnp(r̂).

4. Calculate t̂ = MSEp(θ̂)−MSEnp(r̂).

5. Simulate from the parametric model θ̂ to get faked data (x′1, y
′
1), . . . (x′n, y

′
n).

6. Fit the parametric model to the simulated data, getting estimate θ̃ and
MSEp(θ̃).
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7. Fit the nonparametric model to the simulated data, getting estimate r̃
and MSEnp(r̃).

8. Calculate T̃ = MSEp(θ̃)−MSEnp(r̃).

9. Repeat steps 5–8 many times to get an estimate of the distribution of T .

10. The p-value is
1+#{T̃>t̂}

1+#T .

Let’s step through the logic. In general, the error of the non-parametric
model will be converging to the smallest level compatible with the intrinsic
noise of the process. What about the parametric model?

Suppose on the one hand that the parametric model is correctly specified.
Then its error will also be converging to the minimum — by assumption, it’s
got the functional form right so bias will go to zero, and as θ̂ → θ0, the variance
will also go to zero. In fact, with enough data the correctly-specified parametric
model will actually generalize better than the non-parametric model2.

Suppose on the other hand that the parametric model is mis-specified. Then
it is predictions are systematically wrong, even with unlimited amounts of data
— there’s some bias which never goes away, no matter how big the sample.
Since the non-parametric smoother does eventually come arbitrarily close to
the true regression function, the smoother will end up predicting better than
the parametric model.

Smaller errors for the smoother, then, suggest that the parametric model is
wrong. But since the smoother has higher capacity, it could easily get smaller
errors on a particular sample by chance and/or over-fitting, so only big differ-
ences in error count as evidence. Simulating from the parametric model gives
us surrogate data which looks just like reality ought to, if the model is true.
We then see how much better we could expect the non-parametric smoother to
fit under the parametric model. If the non-parametric smoother fits the actual
data much better than this, we can reject the parametric model with high con-
fidence: it’s really unlikely that we’d see that big an improvement from using
the nonparametric model just by luck.3

As usual, we simulate from the parametric model simply because we have
no hope of working out the distribution of the differences in MSEs from first
principles. This is an example of our general strategy of bootstrapping.

1.1 Examples of Testing a Parametric Model

Let’s see this in action. First, let’s detect a reasonably subtle nonlinearity. Take
the non-linear function g(x) = log x+ 1, and say that Y = g(x)+ε, with ε being

2Remember that the smoother must, so to speak, use up some of the degrees of freedom
in the data to figure out the shape of the regression function. The parametric model, on the
other hand, takes the shape of the basic shape regression function as given, and uses all the
degrees of freedom to tune its parameters.

3As usual with p-values, this is not symmetric. A high p-value might mean that the true
regression function is very close to r(x; θ), or it might just mean that we don’t have enough
data to draw conclusions.
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IID Gaussian noise with mean 0 and standard deviation 0.15. (This is one of
the two examples from the notes to Lecture 4.) Figure 1 shows the regression
function and the data. The nonlinearity is clear with the curve to “guide the
eye”, but fairly subtle.

A simple linear regression looks pretty good:

> glinfit = lm(y~x,data=gframe)
> print(summary(glinfit),signif.stars=FALSE,digits=2)

Call:
lm(formula = y ~ x, data = gframe)

Residuals:
Min 1Q Median 3Q Max

-0.416 -0.115 0.004 0.118 0.387

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.208 0.019 11 <2e-16
x 0.434 0.011 41 <2e-16

Residual standard error: 0.16 on 298 degrees of freedom
Multiple R-squared: 0.85,Adjusted R-squared: 0.85
F-statistic: 1.7e+03 on 1 and 298 DF, p-value: <2e-16

R2 is ridiculously high — the regression line preserves 85% of the variance in
the data. The p-value reported by R is also very, very low, which seems good,
but remember all this really means is “you’d have to be crazy to think a flat
line fit better than one with a slope” (Figure 2)

The in-sample MSE of the linear fit4

> mean(residuals(glinfit)^2)
[1] 0.02617729

The nonparametric regression has a somewhat smaller MSE5

> gnpr <- npreg(y~x,data=gframe)

> gnpr$MSE
[1] 0.02163506

So t̂ = 0.0045:
4If we ask R for the MSE, by doing summary(glinfit)$sigma2̂, we get 0.02635298. These

differ by a factor of n/(n − 2) = 300/298 = 1.0067, because R is trying to estimate the
out-of-sample error by scaling up the in-sample error, the same way the estimated population
variance scales up the sample variance. We want to compare in-sample fits.

5npreg does not apply the kind of correction mentioned in the previous footnote.
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x <- runif(300,0,3)
yg <- log(x+1)+rnorm(length(x),0,0.15)
gframe <- data.frame(x=x,y=yg)
plot(x,yg,xlab="x",ylab="y")
curve(log(1+x),col="grey",add=TRUE)

Figure 1: True regression curve (grey) and data points (circles). The curve
g(x) = log x+ 1.
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plot(x,yg,xlab="x",ylab="y")
curve(log(1+x),col="grey",add=TRUE,lwd=4)
abline(glinfit,lwd=4)

Figure 2: As previous figure, but adding the least-squares regression line (black).
Line widths exaggerated for clarity.
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# One surrogate data set for simple linear regression
# Inputs: linear model (linfit), x values to simulate at (test.x)
# Outputs: Data frame with columns x and y, latter simulated
sim.lm <- function(linfit, test.x) {
n <- length(test.x)
sim.frame <- data.frame(x=test.x) # Add the y column later
sigma <- summary(linfit)$sigma*(n-2)/n # MLE value
y.sim <- predict(linfit,newdata=sim.frame)
y.sim <- y.sim + rnorm(n,0,sigma) # Add noise
sim.frame <- data.frame(sim.frame,y=y.sim) # Add a column
return(sim.frame)

}

Code Example 1: Simulate a new data set from a linear model, assuming
homoskedastic Gaussian noise. It also assumes that there is one input variable,
x, and that the response variable is called y. Could you modify it to work with
multiple regression?

> t.hat = mean(glinfit$residual^2) - gnpr$MSE
> t.hat
[1] 0.004542232

Now we need to simulate from the fitted parametric model, using its esti-
mated coefficients and noise level. We have seen several times now how to do
this. The function sim.lm in Example 1 does this, along the same lines as the
examples in Lecture 8; it assumes homoskedastic Gaussian noise. Again, as
before, we need a function which will calculate the difference in MSEs between
a linear model and a kernel smoother fit to the same data set — which will do
automatically what we did by hand above. This is calc.T in Example 2. Note
that the kernel bandwidth has to be re-tuned to each new data set.

If we call calc.T on the output of sim.lm, we get one value of the test
statistic under the null distribution:

> calc.T(sim.lm(glinfit,x))
[1] 0.001513319

Now we just repeat this a lot to get a good approximation to the sampling
distribution of T under the null hypothesis:

null.samples.T <- replicate(200,calc.T(sim.lm(glinfit,x)))

This takes some time, because each replication involves not just generating a
new simulation sample, but also cross-validation to pick a bandwidth. This adds
up to about a second per replicate on my laptop, and so a couple of minutes for
200 replicates.

(While the computer is thinking, look at the command a little more closely.
It leaves the x values alone, and only uses simulation to generate new y values.
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# Calculate the difference-in-MSEs test statistic
# Inputs: A data frame (my.data)
# Presumes: data has columns "x" and "y", which are input and
# response

# Calls: np::npreg
# Output: Difference in MSEs between linear model and kernel
# smoother

calc.T <- function(data) {
# Fit the linear model, extract residuals, calculate MSE
MSE.p <- mean((lm(y~x, data=data)$residuals)^2)
# npreg gets mysteriously unhappy when called with a "data"
# argument that is defined inside this function; npregbw
# doesn’t complain
MSE.np.bw <- npregbw(y~x,data=data)
MSE.np <- npreg(MSE.np.bw)$MSE
return(MSE.p - MSE.np)

}

Code Example 2: Calculate the difference-in-MSEs test statistic.

This is appropriate here because our model doesn’t really say where the x values
came from; it’s just about the conditional distribution of Y given X. If the
model we were testing specified a distribution for x, we should generate x each
time we invoke calc.T. If the specification is vague, like “x is IID” but with no
particular distribution, then use the nonparametric bootstrap. The command
would be something like

replicate(200,calc.T(sim.lm(glinfit,resample(x)))

using the resample function from lecture 8, to draw a different bootstrap sample
of x each time.)

When it’s done, we can plot the distribution and see that the observed value
t̂ is pretty far out along the right tail (Figure 3). This tells us that it’s very
unlikely that npreg would improve so much on the linear model if the latter
were true. In fact, none of the bootstrap replicates were that big:

> sum(null.samples.T > t.hat)
[1] 0

so our estimated p-value is 1
201 . We can thus reject the linear model pretty

confidently.6

As a second example, let’s suppose that the linear model is right — then
the test should give us a high p-value. So let us stipulate that in reality

Y = 0.2 + 0.5x+ η (4)
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hist(null.samples.T,n=31,xlim=c(min(null.samples.T),1.1*t.hat),probability=TRUE)
abline(v=t.hat)

Figure 3: Histogram of the distribution of T = MSEp − MSEnp for data
simulated from the parametric model. The vertical line mark the observed
value. Notice that the mode is positive and the distribution is right-skewed;
this is typical.
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y2 = 0.2+0.5*x + rnorm(length(x),0,0.15)
y2.frame <- data.frame(x=x,y=y2)
plot(x,y2,xlab="x",ylab="y")
abline(0.2,0.5,col="grey")

Figure 4: Data from the linear model (true regression line in grey).
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with η ∼ N (0, 0.152). Figure 4 shows data from this, of the same size as before.
Repeating the same exercise as before, we get that t̂ = 6.8× 10−4, together

with a slightly different null distribution (Figure 5). Now the p-value is 32%,
which one would be quite rash to reject.

6If we wanted a more precise estimate of the p-value, we’d need to use more bootstrap
samples.

11



Histogram of null.samples.T

null.samples.T

Fr
eq
ue
nc
y

-0.001 0.000 0.001 0.002 0.003 0.004

0
5

10
15

20
25

y2.fit <- lm(y~x,data=y2.frame)
null.samples.T.y2 <- replicate(200,calc.T(sim.lm(y2.fit,x)))
t.hat2 <- calc.T(y2.frame)
hist(null.samples.T.y2,n=31,probability=TRUE)
abline(v=t.hat2)

Figure 5: As in Figure 3, but using the data and fits from Figure 4.
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2 Why Use Parametric Models At All?

It might seem by this point that there is little point to using parametric models
at all. Either our favorite parametric model is right, or it isn’t. If it is right, then
a consistent nonparametric estimate will eventually approximate it arbitrarily
closely. If the parametric model is wrong, it will not self-correct, but the non-
parametric estimate will eventually show us that the parametric model doesn’t
work. Either way, the parametric model seems superfluous.

There are two things wrong with this line of reasoning — two good reasons
to use parametric models.

1. One use of statistical models, like regression models, is to connect scien-
tific theories to data. The theories are about the mechanisms generating
the data. Sometimes these hypotheses are “tight” enough to tell us what
the functional form of the regression should be, or even what the distri-
bution of noise terms should be, but still contain unknown parameters.
In this case, the parameters themselves are substantively meaningful and
interesting — we don’t just care about prediction. It can be very hard to
relate non-parametric smoothing curves to aspects of scientific theories in
the same way.7

2. Even if all we care about is prediction accuracy, there is still the bias-
variance trade-off to consider. Non-parametric smoothers will have larger
variance in their predictions, at the same sample size, than correctly-
specified parametric models, simply because the former are more flexible.
Both models are converging on the true regression function, but the para-
metric model converges faster, because it searches over a more confined
space. In terms of total prediction error, the parametric model’s low
variance plus vanishing bias beats the non-parametric smoother’s larger
variance plus vanishing bias. (Remember that this is part of the logic of
testing parametric models in the previous section.) In the next section,
we will see that this argument can actually be pushed further, to work
with not-quite-correctly specified models.

Of course, both of these advantages of parametric models only obtain if they
are well-specified. If we want to claim those advantages, we need to check the
specification.

7On the other hand, it is not uncommon for scientists to write down theories positing linear
relationships between variables, not because they actually believe that, but because that’s the
only thing they know how to estimate statistically.
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3 Why We Sometimes Want Mis-Specified Para-
metric Models

Low-dimensional parametric models have potentially high bias (if the real re-
gression curve is very different from what the model posits), but low variance
(because there isn’t that much to estimate). Non-parametric regression mod-
els have low bias (they’re flexible) but high variance (they’re flexible). If the
parametric model is true, it can converge faster than the non-parametric one.
Even if the parametric model isn’t quite true, a small bias plus low variance can
sometimes still beat a non-parametric smoother’s smaller bias and substantial
variance. With enough data the non-parametric smoother will eventually over-
take the mis-specified parametric model, but with small samples we might be
better off embracing bias.

To illustrate, suppose that the true regression function is

E [Y |X = x] = 0.2 +
1
2

(
1 +

sinx
10

)
x (5)

This is very nearly linear over small ranges — say x ∈ [0, 3] (Figure 6).
I will use the fact that I know the true model here to calculate the actual

expected generalization error, by averaging over many samples (Example 3).
Figure 7 shows that, out to a fairly substantial sample size (≈ 500), the

lower bias of the non-parametric regression is systematically beaten by the lower
variance of the linear model — though admittedly not by much.
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h <- function(x) { 0.2 + 0.5*(1+sin(x)/10)*x }
curve(h(x),from=0,to=3)

Figure 6: Graph of h(x) = 0.2 + 1
2

(
1 + sin x
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)
x over [0, 3].
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nearly.linear.out.of.sample = function(n) {
# Combines simulating the true model with fitting parametric
# model and smoother, calculating MSEs
x=seq(from=0,to=3,length.out=n)
y = h(x) + rnorm(n,0,0.15)
data <- data.frame(x=x,y=y)
y.new = h(x) + rnorm(n,0,0.15)
sim.lm <- lm(y~x,data=data)
lm.mse = mean(( fitted(sim.lm) - y.new )^2)
sim.np.bw <- npregbw(y~x,data=data)
sim.np <- npreg(sim.np.bw)
np.mse = mean((sim.np$mean - y.new)^2)
mses <- c(lm.mse,np.mse)
return(mses)

}

nearly.linear.generalization = function(n,m=100) {
raw = replicate(m,nearly.linear.out.of.sample(n))
reduced = rowMeans(raw)
return(reduced)

}

Code Example 3: Evaluating the out-of-sample error for the nearly-linear
problem as a function of n, and evaluting the generalization error by averaging
over many samples.
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sizes = c(5,10,15,20,25,30,50,100,200,500)
generalizations = sapply(sizes,nearly.linear.generalization)
plot(sizes,sqrt(generalizations[1,]),ylim=c(0.12,0.22),type="l",

xlab="n",ylab="RMS generalization error")
lines(sizes,sqrt(generalizations[2,]),lty=2)
abline(h=0.15,col="grey")

Figure 7: Root-mean-square generalization error for linear model (solid line) and
kernel smoother (dashed line), fit to the same sample of the indicated size. The
true regression curve is as in 6, and observations are corrupted by IID Gaussian
noise with σ = 0.15 (grey horizontal line). The cross-over after which the
nonparametric regressor has better generalization performance happens shortly
before n = 500.
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