
Lecture 11: Splines

36-402, Advanced Data Analysis

15 February 2011

Reading: Chapter 11 in Faraway; chapter 2, pp. 49–73 in Berk.
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1 Smoothing by Directly Penalizing Curve Flex-
ibility

Let’s go back to the problem of smoothing one-dimensional data. We imagine,
that is to say, that we have data points (x1, y1), (x2, y2), . . . (xn, yn), and we
want to find a function r̂(x) which is a good approximation to the true condi-
tional expectation or regression function r(x). Previously, we rather indirectly
controlled how irregular we allowed our estimated regression curve to be, by
controlling the bandwidth of our kernels. But why not be more direct, and
directly control irregularity?

A natural way to do this, in one dimension, is to minimize the spline ob-
jective function

L(m,λ) ≡ 1
n

n∑
i=1

(yi −m(xi))2 + λ

∫
dx(m′′(x))2 (1)
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Figure 1: A craftsman’s spline, from Wikipedia, s.v. “Flat spline”.

The first term here is just the mean squared error of using the curve m(x) to
predict y. We know and like this; it is an old friend.

The second term, however, is something new for us. m′′ is the second deriva-
tive of m with respect to x — it would be zero if m were linear, so this measures
the curvature of m at x. The sign of m′′ says whether the curvature is concave
or convex, but we don’t care about that so we square it. We then integrate this
over all x to say how curved m is, on average. Finally, we multiply by λ and add
that to the MSE. This is adding a penalty to the MSE criterion — given two
functions with the same MSE, we prefer the one with less average curvature. In
fact, we are willing to accept changes in m that increase the MSE by 1 unit if
they also reduce the average curvature by at least λ.

The solution to this minimization problem,

r̂λ = argmin
m

L(m,λ) (2)

is a function of x, or curve, called a smoothing spline, or smoothing spline
function1.

1The name “spline” actually comes from a simple tool used by craftsmen to draw smooth
curves, which was a thin strip of a flexible material like a soft wood, as in Figure 1. (A
few years ago, when the gas company dug up my front yard, the contractors they hired to
put the driveway back used a plywood board to give a smooth, outward-curve edge to the
new driveway. The “knots” metal stakes which the board was placed between, and the curve
of the board was a spline, and they poured concrete to one side of the board, which they
left standing until the concrete dried.) Bending such a material takes energy — the stiffer
the material, the more energy has to go into bending it through the same shape, and so the
straighter the curve it will make between given points. For smoothing splines, using a stiffer
material corresponds to increasing λ.
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It is possible to show that all solutions, no matter what the initial data are,
are piecewise cubic polynomials which are continuous and have continuous first
and second derivatives — i.e., not only is r̂ continuous, so are r̂′ and r̂′′. The
boundaries between the pieces are located at the original data points. These
are called, somewhat obscure, the knots of the spline. The function continuous
beyond the largest and smallest data points, but it is always linear on those
regions.2 I will not attempt to prove this.

I will also assert, without proof, that such piecewise cubic polynomials can
approximate any well-behaved function arbitrarily closely, given enough pieces.
Finally, I will assert that smoothing splines are linear smoothers, in the sense
given in earlier lectures: predicted values are always linear combinations of the
original response values yi.

1.1 The Meaning of the Splines

Look back to the optimization problem. As λ → ∞, having any curvature at
all becomes infinitely penalized, and only linear functions are allowed. But we
know how to minimize mean squared error with linear functions, that’s OLS.
So we understand that limit.

On the other hand, as λ→ 0, we decide that we don’t care about curvature.
In that case, we can always come up with a function which just interpolates
between the data points, an interpolation spline passing exactly through
each point. More specifically, of the infinitely many functions which interpolate
between those points, we pick the one with the minimum average curvature.

At intermediate values of λ, r̂λ becomes a function which compromises be-
tween having low curvature, and bending to approach all the data points closely
(on average). The larger we make λ, the more curvature is penalized. There is
a bias-variance trade-off here. As λ grows, the spline becomes less sensitive to
the data, with lower variance to its predictions but more bias. As λ shrinks, so
does bias, but variance grows. For consistency, we want to let λ→ 0 as n→∞,
just as, with kernel smoothing, we let the bandwidth h→ 0 while n→∞.

We can also think of the smoothing spline as the function which minimizes
the mean squared error, subject to a constraint on the average curvature. This
turns on a general corresponds between penalized optimization and optimization
under constraints, which is explored in the appendix. The short version is
that each level of λ corresponds to imposing a cap on how much curvature the
function is allowed to have, on average, and the spline we fit with that λ is
the MSE-minimizing curve subject to that constraint. As we get more data,
we have more information about the true regression function and can relax the
constraint (let λ shrink) without losing reliable estimation.

It will not surprise you to learn that we select λ by cross-validation. Ordinary
k-fold CV is entirely possible, but leave-one-out CV works quite well for splines.
In fact, the default in most spline software is either leave-one-out CV, or an

2Can you explain why it is linear outside the data range, in terms of the optimization
problem?
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even faster approximation called “generalized cross-validation” or GCV. The
details of how to rapidly compute the LOOCV or GCV scores are not especially
important for us, but can be found, if you want them, in many books, such as
Simonoff (1996, §5.6.3).
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2 An Example

The default R function for fitting a smoothing spline is called smooth.spline.
The syntax is

smooth.spline(x, y, cv=FALSE)

where x should be a vector of values for input variable, y is a vector of values for
the response (in the same order), and the switch cv controls whether to pick λ
by generalized cross-validation (the default) or by leave-one-out cross-validation.
The object which smooth.spline returns has an $x component, re-arranged in
increasing order, a $y component of fitted values, a $yin component of original
values, etc. See help(smooth.spline) for more.

Figure 2 revisits the stock-market data from Homework 4 (and lecture 7).
The vector sp contains the log-returns of the S & P 500 stock index on 2528
consecutive trading days; we want to use the log-returns on one day to predict
what they will be on the next. The horizontal axis in the figure shows the log-
returns for each of 2527 days t, and the vertical axis shows the corresponding
log-return for the succeeding day t− 1q You saw in the homework that a linear
model fitted to this data displays a slope of −0.0822 (grey line in the figure).
Fitting a smoothing spline with cross-validation selects λ = 0.0513, and the
black curve:

> sp.today <- sp[-length(sp)]
> sp.tomorrow <- sp[-1]
> sp.spline <- smooth.spline(x=sp[-length(sp)],y=sp[-1],cv=TRUE)
Warning message:
In smooth.spline(sp[-length(sp)], sp[-1], cv = TRUE) :
crossvalidation with non-unique ’x’ values seems doubtful

> sp.spline
Call:
smooth.spline(x = sp[-length(sp)], y = sp[-1], cv = TRUE)

Smoothing Parameter spar= 1.389486 lambda= 0.05129822 (14 iterations)
Equivalent Degrees of Freedom (Df): 4.206137
Penalized Criterion: 0.4885528
PRESS: 0.0001949005
> sp.spline$lambda
[1] 0.05129822

(PRESS is the “prediction sum of squares”, i.e., the sum of the squared leave-
one-out prediction errors. Also, the warning about cross-validation, while well-
intentioned, is caused here by there being just two days with log-returns of zero.)
This is the curve shown in black in the figure. The curves shown in blue are for
large values of λ, and clearly approach the linear regression; the curves shown
in red are for smaller values of λ.

The spline can also be used for prediction. For instance, if we want to know
what the return to expect following a day when the log return was +0.01,
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sp.today <- sp[-length(sp)]
sp.tomorrow <- sp[-1]
plot(sp.today,sp.tomorrow,xlab="Today’s log-return",

ylab="Tomorrow’s log-return")
abline(lm(sp.tomorrow ~ sp.today),col="grey")
sp.spline <- smooth.spline(x=sp.today,y=sp.tomorrow,cv=TRUE)
lines(sp.spline)
lines(smooth.spline(sp.today,sp.tomorrow,spar=1.5),col="blue")
lines(smooth.spline(sp.today,sp.tomorrow,spar=2),col="blue",lty=2)
lines(smooth.spline(sp.today,sp.tomorrow,spar=1.1),col="red")
lines(smooth.spline(sp.today,sp.tomorrow,spar=0.5),col="red",lty=2)

Figure 2: The S& P 500 log-returns data (circles), together with the OLS
linear regression (grey line), the spline selected by cross-validation (solid
black curve, λ = 0.0513), some more smoothed splines (blue, λ = 0.322
and 1320) and some less smooth splines (red, λ = 4.15 × 10−4 and
1.92 × 10−8). Incoveniently, smooth.spline does not let us control λ di-
rectly, but rather a somewhat complicated but basically exponential trans-
formation of it called spar. See help(smooth.spline) for the gory de-
tails. The equivalent λ can be extracted from the return value, e.g.,
smooth.spline(sp.today,sp.tomorrow,spar=2)$lambda.
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> predict(sp.spline,x=0.01)
$x
[1] 0.01
$y
[1] -0.0007169499

i.e., a very slightly negative log-return. (Giving both an x and a y value like
this means that we can directly feed this output into many graphics routines,
like points or lines.)

2.1 Confidence Bands for Splines

Continuing the example, the smoothing spline selected by cross-validation has
a negative slope everywhere, like the regression line, but it’s asymmetric — the
slope is more negative to the left, and then levels off towards the regression
line. (See Figure 2 again.) Is this real, or might the asymmetry be a sampling
artifact?

We’ll investigate by finding confidence bands for the spline, much as we did
in Lecture 8 for kernel regression. Again, we need to bootstrap, and we can do
it either by resampling the residuals or resampling whole data points. Let’s take
the latter approach, which assumes less about the data. We’ll need a simulator:

sp.frame <- data.frame(today=sp.today,tomorrow=sp.tomorrow)
sp.resampler <- function() {
n <- nrow(sp.frame)
resample.rows <- sample(1:n,size=n,replace=TRUE)
return(sp.frame[resample.rows,])

}

This treats the points in the scatterplot as a complete population, and then
draws a sample from them, with replacement, just as large as the original.
We’ll also need an estimator. What we want to do is get a whole bunch of
spline curves, one on each simulated data set. But since the values of the
input variable will change from one simulation to another, to make everything
comparable we’ll evaluate each spline function on a fixed grid of points, that
runs along the range of the data.

sp.spline.estimator <- function(data,m=300) {
# Fit spline to data, with cross-validation to pick lambda
fit <- smooth.spline(x=data[,1],y=data[,2],cv=TRUE)
# Set up a grid of m evenly-spaced points on which to evaluate the spline
eval.grid <- seq(from=min(sp.today),to=max(sp.today),length.out=m)
# Slightly inefficient to re-define the same grid every time we call this,
# but not a big overhead

# Do the prediction and return the predicted values
return(predict(fit,x=eval.grid)$y) # We only want the predicted values

}
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This sets the number of evaluation points to 300, which is large enough to give
visually smooth curves, but not so large as to be computationally unwieldly.

Now put these together to get confidence bands:

sp.spline.cis <- function(B,alpha,m=300) {
spline.main <- sp.spline.estimator(sp.frame,m=m)
# Draw B boottrap samples, fit the spline to each
spline.boots <- replicate(B,sp.spline.estimator(sp.resampler(),m=m))
# Result has m rows and B columns

cis.lower <- 2*spline.main - apply(spline.boots,1,quantile,probs=1-alpha/2)
cis.upper <- 2*spline.main - apply(spline.boots,1,quantile,probs=alpha/2)
return(list(main.curve=spline.main,lower.ci=cis.lower,upper.ci=cis.upper,

x=seq(from=min(sp.today),to=max(sp.today),length.out=m)))
}

The return value here is a list which includes the original fitted curve, the lower
and upper confidence limits, and the points at which all the functions were
evaluated.

Figure 3 shows the resulting 95% confidence limits, based on B=1000 boot-
strap replications. (Doing all the bootstrapping took 45 seconds on my laptop.)
These are pretty clearly asymmetric in the same way as the curve fit to the
whole data, but notice how wide they are, and how they get wider the further
we go from the center of the distribution in either direction.
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sp.cis <- sp.spline.cis(B=1000,alpha=0.05)
plot(sp.today,sp.tomorrow,xlab="Today’s log-return",

ylab="Tomorrow’s log-return")
abline(lm(sp.tomorrow ~ sp.today),col="grey")
lines(x=sp.cis$x,y=sp.cis$main.curve)
lines(x=sp.cis$x,y=sp.cis$lower.ci)
lines(x=sp.cis$x,y=sp.cis$upper.ci)

Figure 3: Bootstrapped pointwise confidence band for the smoothing spline of
the S & P 500 data, as in Figure 2. The 95% confidence limits around the main
spline estimate are based on 1000 bootstrap re-samplings of the data points in
the scatterplot.
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3 Basis Functions

This section is optional reading.

Splines, I said, are piecewise cubic polynomials. To see how to fit them, let’s
think about how to fit a global cubic polynomial. We would define four basis
functions,

B1(x) = 1 (3)
B2(x) = x (4)
B3(x) = x2 (5)
B4(x) = x3 (6)

with the hypothesis being that the regression function is a weight sum of these,

r(x) =
4∑
j=1

βjBj(x) (7)

That is, the regression would be linear in the transformed variableB1(x), . . . B4(x),
even though it is nonlinear in x.

To estimate the coefficients of the cubic polynomial, we would apply each
basis function to each data point xi and gather the results in an n × 4 matrix
B,

Bij = Bj(xi) (8)

Then we would do OLS using the B matrix in place of the usual data matrix x:

β̂ = (BTB)−1BTy (9)

Since splines are piecewise cubics, things proceed similarly, but we need to
be a little more careful in defining the basis functions. Recall that we have n
values of the input variable x, x1, x2, . . . xn. For the rest of this section, I will
assume that these are in increasing order, because it simplifies the notation.
These n “knots” define n + 1 pieces or segments n − 1 of them between the
knots, one from −∞ to x1, and one from xn to +∞. A third-order polynomial
on each segment would seem to need a constant, linear, quadratic and cubic
term per segment. So the segment running from xi to xi+1 would need the
basis functions

1(xi,xi+1)(x), x1(xi,xi+1)(x), x21(xi,xi+1)(x), x31(xi,xi+1)(x) (10)

where as usual the indicator function 1(xi,xi+1)(x) is 1 if x ∈ (xi, xi+1) and 0
otherwise. This makes it seem like we need 4(n+ 1) = 4n+ 4 basis functions.

However, we know from linear algebra that the number of basis vectors we
need is equal to the number of dimensions of the vector space. The number of
dimensions for an arbitrary piecewise cubic with n+1 segments is indeed 4n+4,
but splines are constrained to be smooth. The spline must be continuous, which
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means that at each xi, the value of the cubic from the left, defined on (xi−1, xi),
must match the value of the cubic from the right, defined on (xi, xi+1). This
gives us one constraint per data point, reducing the dimensionality to at most
3n+4. Since the first and second derivatives are also continuous, we come down
to a dimensionality of just n + 4. Finally, we know that the spline function is
linear outside the range of the data, i.e., on (−∞, x1) and on (xn,∞), lowering
the dimension to n. There are no more constraints, so we end up needing only
n basis functions. And in fact, from linear algebra, any set of n piecewise cubic
functions which are linearly independent3 can be used as a basis. One common
choice is

B1(x) = 1 (11)
B2(x) = x (12)

Bi+2(x) =
(x− xi)3+ − (x− xn)3+

xn − xi
−

(x− xn−1)3+ − (x− xn)3+
xn − xn−1

(13)

where (a)+ = a if a > 0, and = 0 otherwise. This rather unintuitive-looking
basis has the nice property that the second and third derivatives of each Bj are
zero outside the interval (x1, xn).

Now that we have our basis functions, we can once again write the spline as
a weighted sum of them,

m(x) =
m∑
j=1

βjBj(x) (14)

and put together the matrix B where Bij = Bj(xi). We can write the spline
objective function in terms of the basis functions,

nL = (y −Bβ)T (y −Bβ) + nλβTΩβ (15)

where the matrix Ω encodes information about the curvature of the basis func-
tions:

Ωjk =
∫
dxB′′j (x)B′′k (x) (16)

Notice that only the quadratic and cubic basis functions will contribute to Ω.
With the choice of basis above, the second derivatives are non-zero on, at most,
the interval (x1, xn), so each of the integrals in Ω is going to be finite. This is
something we (or, realistically, R) can calculate once, no matter what λ is. Now
we can find the smoothing spline by differentiating with respect to β:

0 = −2BTy + 2BTBβ̂ + 2nλΩβ̂ (17)

BTy = (BTB + nλΩ)β̂ (18)

β̂ = (BTB + nλΩ)−1BTy (19)

Once again, if this were ordinary linear regression, the OLS estimate of the
coefficients would be (xTx)−1xTy. In comparison to that, we’ve made two

3Recall that vectors ~v1, ~v2, . . . ~vd are linearly independent when there is no way to write any
one of the vectors as a weighted sum of the others. The same definition applies to functions.
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changes. First, we’ve substituted the basis function matrix B for the original
matrix of independent variables, x — a change we’d have made already for plain
polynomial regression. Second, the “denominator” is not xTx, but BTB+nλΩ.
Since xTx is n times the covariance matrix of the independent variables, we
are taking the covariance matrix of the spline basis functions and adding some
extra covariance — how much depends on the shapes of the functions (through
Ω) and how much smoothing we want to do (through λ). The larger we make
λ, the less the actual data matters to the fit.

In addition to explaining how splines can be fit quickly (do some matrix
arithmetic), this illustrates two important tricks. One, which we won’t explore
further here, is to turn a nonlinear regression problem into one which is linear
in another set of basis functions. This is like using not just one transformation
of the input variables, but a whole library of them, and letting the data decide
which transformations are important. There remains the issue of selecting the
basis functions, which can be quite tricky. In addition to the spline basis4,
most choices are various sorts of waves — sine and cosine waves of different
frequencies, various wave-forms of limited spatial extent (“wavelets”: see section
11.4 in Faraway), etc. The ideal is to chose a function basis where only a
few non-zero coefficients would need to be estimated, but this requires some
understanding of the data. . .

The other trick is that of stabilizing an unstable estimation problem by
adding a penalty term. This reduces variance at the cost of introducing some
bias. We will see much more of this in a later lecture.

4 Splines in Multiple Dimensions

Suppose we have two input variables, x and z, and a single response y. How
could we do a spline fit?

One approach is to generalize the spline optimization problem so that we
penalize the curvature of the spline surface (no longer a curve). The appropriate
penalized least-squares objective function to minimize is

L(m,λ) =
n∑
i=1

(yi −m(xi, zi))2+λ
∫
dxdz

[(
∂2m

dx2

)2

+ 2
(
∂2m

dxdz

)2

+
(
∂2m

dz2

)2
]

(20)
The solution is called a thin-plate spline. This is appropriate when the two
input variables x and z should be treated more or less symmetrically.

An alternative is use the spline basis functions from section 3. We write

m(x) =
M1∑
j=1

M2∑
k=1

βjkBj(x)Bk(z) (21)

4Or, really, bases; there are multiple sets of basis functions for the splines, just like there
are multiple sets of basis vectors for the plane. If you see the phrase “B splines”, it refers to
a particular choice of spline basis functions.
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Doing all possible multiplications of one set of numbers or functions with another
is said to give their outer product or tensor product, so this is known as
a tensor product spline or tensor spline. We have to chose the number of
terms to include for each variable (M1 and M2), since using n for each would
give n2 basis functions, and fitting n2 coefficients to n data points is asking for
trouble.

5 Smoothing Splines versus Kernel Regression

For one input variable and one output variable, smoothing splines can basically
do everything which kernel regression can do5. The advantages of splines are
their computational speed and (once we’ve calculated the basis functions) sim-
plicity, as well as the clarity of controlling curvature directly. Kernels however
are easier to program (if slower to run), easier to analyze mathematically6, and
extend more straightforwardly to multiple variables, and to combinations of
discrete and continuous variables.

Further Reading

In addition to the sections in the textbooks mentioned on p. 1, there are good
discussions of splines in Simonoff (1996, §5), Hastie et al. (2009, ch. 5) and
Wasserman (2006, §5.5). The classic reference, by one of the people who really
developed splines as a useful statistical tool, is Wahba (1990), which is great if
you already know what a Hilbert space is and how to manipulate it.
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A Constraints, Lagrange multipliers, and penal-
ties

Suppose we want to minimize7 a function L(u, v) of two variables u and v. (It
could be more, but this will illustrate the pattern.) Ordinarily, we know exactly
what to do: we take the derivatives of L with respect to u and to v, and solve
for the u∗, v∗ which makes the derivatives equal to zero, i.e., solve the system
of equations

∂L

∂u
= 0 (22)

∂L

∂v
= 0 (23)

If necessary, we take the second derivative matrix of L and check that it is
positive.

Suppose however that we want to impose a constraint on u and v, to de-
mand that they satisfy some condition which we can express as an equation,
g(u, v) = c. The old, unconstrained minimum u∗, v∗ generally will not satisfy
the constraint, so there will be a different, constrained minimum, say û, v̂. How
do we find it?

We could attempt to use the constraint to eliminate either u or v — take
the equation g(u, v) = c and solve for u as a function of v, say u = h(v, c). Then
L(u, v) = L(h(v, c), v), and we can minimize this over v, using the chain rule:

dL

dv
=
∂L

∂v
+
∂L

∂u

∂h

∂v
(24)

which we then set to zero and solve for v. Except in quite rare cases, this is
messy.

A superior alternative is the method of Lagrange multipliers. We intro-
duce a new variable λ, the Lagrange multiplier, and a new objective function,
the Lagrangian,

L(u, v, λ) = L(u, v) + λ(g(u, v)− c) (25)

which we minimize with respect to λ, u and v and λ. That is, we solve

∂L
∂λ

= 0 (26)

∂L
∂u

= 0 (27)

∂L
∂v

= 0 (28)

Notice that minimize L with respect to λ always gives us back the constraint
equation, because ∂L

∂λ = g(u, v)− c. Moreover, when the constraint is satisfied,

7Maximizing L is of course just minimizing −L.
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L(u, v, λ) = L(u, v). Taken together, these facts mean that the û, v̂ we get
from the unconstrained minimization of L is equal to what we would find from
the constrained minimization of L. We have encoded the constraint into the
Lagrangian.

Practically, the value of this is that we know how to solve unconstrained
optimization problems. The derivative with respect to λ yields, as I said, the
constraint equation. The other derivatives are however yields

∂L
∂u

=
∂L

∂u
+ λ

∂g

∂u
(29)

∂L
∂v

=
∂L

∂v
+ λ

∂g

∂v
(30)

Together with the constraint, this gives us as many equations as unknowns, so
a solution exists.

If λ = 0, then the constraint doesn’t matter — we could just as well have
ignored it. When λ 6= 0, the size (and sign) of the constraint tells us about
how it affects the value of the objective function at the minimum. The value
of the objective function L at the constrained minimum is bigger than at the
unconstrained minimum, L(û, v̂) > L(u∗, v∗). Changing the level of constraint
c changes how big this gap is. As we saw, L(û, v̂) = L(û, v̂), so we can see how
much influence the level of the constraint on the value of the objective function
by taking the derivative of L with respect to c,

∂L

∂c
= −λ (31)

That is, at the constrained minimum, increasing the constraint level from c to
c + δ would change the value of the objective function by −λδ. (Note that λ
might be negative.) This makes λ the “price”, in units of L, which we would
be willing to pay for a marginal increase in c — what economists would call the
shadow price8.

If there is more than one constraint equation, then we just introduce more
multipliers, and more terms, into the Lagrangian. Each multiplier corresponds
to a different constraint. The size of each multiplier indicates how much lower
the objective function L could be if we relaxed that constraint — the set of
shadow prices.

What about inequality constraints, g(u, v) ≤ c? Well, either the uncon-
strained minimum exists in that set, in which case we don’t need to worry
about it, or it does not, in which case the constraint is “binding”, and we can
treat this as an equality constraint9.

So much for constrained optimization; how does this relate to penalties?
Well, once we fix λ, the (u, v) which minimizes the full Lagrangian

L(u, v) + λg(u, v) + λc (32)
8In economics, shadow prices are internal to each decision maker, and depend on their

values and resources; they are distinct from market prices, which depend on exchange and are
common to all decision makers.

9A full and precise statement of this idea is the Karush-Kuhn-Tucker theorem of optimiza-
tion, which you can look up.
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has to be the same as the one which minimizes

L(u, v) + λg(u, v) (33)

This is a penalized optimization problem. Changing the magnitude of the
penalty λ corresponds to changing the level c of the constraint. Conversely,
if we start with a penalized problem, it implicitly corresponds to a constraint
on the value of the penalty function g(u, v). So, generally speaking, constrained
optimization corresponds to penalized optimization, and vice versa.

For splines, λ is the shadow price of curvature in units of mean squared
error. Turned around, each value of λ corresponds to constraining the average
curvature not to exceed some level.
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