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1 Partial Residuals and Backfitting for Linear
Models

The general form of a linear regression model is

E
[
Y | ~X = ~x

]
= β0 + ~β · ~x =

p∑
j=0

βjxj (1)

where for j ∈ 1 : p, the xj are the components of ~x, and x0 is always the
constant 1. (Adding a fictitious constant “feature” like this is a standard way
of handling the intercept just like any other regression coefficient.)

Suppose we don’t condition on all of ~X but just one component of it, say
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Xk. What is the conditional expectation of Y ?

E [Y |Xk = xk] = E [E [Y |X1, X2, . . . Xk, . . . Xp] |Xk = xk] (2)

= E

 p∑
j=0

βjXj |Xk = xk

 (3)

= βkxk + E

∑
j 6=k

βjXj |Xk = xk

 (4)

where the first line uses the law of total expectation1, and the second line uses
Eq. 1. Turned around,

βkxk = E [Y |Xk = xk]−E

∑
j 6=k

βjXj |Xk = xk

 (5)

= E

Y −
∑

j 6=k

βjXj

 |Xk = xk

 (6)

The expression in the expectation is the kth partial residual — the (total)
residual is the difference between Y and its expectation, the partial residual is
the difference between Y and what we expect it to be ignoring the contribution
from Xk. Let’s introduce a symbol for this, say Y (k).

βkxk = E
[
Y (k)|Xk = xk

]
(7)

In words, if the over-all model is linear, then the partial residuals are linear. And
notice that Xk is the only input feature appearing here — if we could somehow
get hold of the partial residuals, then we can find βk by doing a simple regression,
rather than a multiple regression. Of course to get the partial residual we need
to know all the other βjs. . .

This suggests the following estimation scheme for linear models, known as
the Gauss-Seidel algorithm, or more commonly and transparently as back-
fitting; the pseudo-code is in Example 1.

This is an iterative approximation algorithm. Initially, we look at how far
each point is from the global mean, and do simple regressions of those deviations
on the input features. This then gives us a better idea of what the regression
surface really is, and we use the deviations from that surface in our next set
of simple regressions. At each step, each coefficient is adjusted to fit in with
what we already know about the other coefficients — that’s why it’s called
“backfitting”. It is not obvious2 that this converges, but it does, and the fixed
point on which it converges is the usual least-squares estimate of β.

1As you learned in baby prob., this is the fact that E [Y |X] = E [E [Y |X,Z] |X] — that
we can always condition on another variable or variables (Z), provided we then average over
those extra variables when we’re done.

2Unless, I suppose, you’re Gauss.
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Given: n× (p+ 1) inputs x (0th column all 1s)
n× 1 responses y
tolerance 1� δ > 0

center y and each column of x
β̂j ← 0 for j ∈ 1 : p
until (all |β̂j − γj | ≤ δ) {

for k ∈ 1 : p {
y
(k)
i = yi −

∑
j 6=k β̂jxij

γk ← regression coefficient of y(k) on x·k
β̂k ← γk

}
}
β̂0 ←

(
n−1

∑n
i=1 yi

)
−
∑p

j=1 β̂jn
−1
∑n

i=1 xij

Return: (β̂0, β̂1, . . . β̂p)

Code Example 1: Pseudocode for backfitting linear models. Assume we make
at least one pass through the until loop. Recall from the handouts on linear
models that centering the data does not change the βj ; this way the intercept
only have to be calculated once, at the end.

Backfitting is not usually how we fit linear models, because with modern
numerical linear algebra it’s actually faster to just calculate (xT x)−1xT y. But
the cute thing about backfitting is that it doesn’t actually rely on the model
being linear.

2 Additive Models

The additive model for regression is

E
[
Y | ~X = ~x

]
= α+

p∑
j=1

fj(xj)

This includes the linear model as a special case, where fj(xj) = βjxj , but
it’s clearly more general, because the fjs can be pretty arbitrary nonlinear
functions. The idea is still that each input feature makes a separate contribution
to the response, and these just add up, but these contributions don’t have to be
strictly proportional to the inputs. We do need to add a restriction to make it
identifiable; without loss of generality, say that E [Y ] = α and E [fj(Xj)] = 0.3

Additive models keep a lot of the nice properties of linear models, but are
more flexible. One of the nice things about linear models is that they are fairly

3To see why we need to do this, imagine the simple case where p = 2. If we add constants
c1 to f1 and c2 to f2, but subtract c1 + c2 from α, then nothing observable has changed about
the model. This degeneracy or lack of identifiability is a little like the rotation problem for
factor analysis, but less harmful because we really can fix it by the convention given above.
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straightforward to interpret: if you want to know how the prediction changes
as you change xj , you just need to know βj . The partial response function fj

plays the same role in an additive model: of course the change in prediction
from changing xj will generally depend on the level xj had before perturbation,
but since that’s also true of reality that’s really a feature rather than a bug. It’s
true that a set of plots for fjs takes more room than a table of βjs, but it’s also
nicer to look at. There are really very, very few situations when, with modern
computing power, linear models are superior to additive models.

Now, one of the nice properties which additive models share with linear ones
has to do with the partial residuals. Defining

Y (k) = Y −

α+
∑
j 6=k

fj(xj)


a little algebra along the lines of the last section shows that

E
[
Y (k)|Xk = xk

]
= fk(xk)

If we knew how to estimate arbitrary one-dimensional regressions, we could now
use backfitting to estimate additive models. But we have spent a lot of time
talking about how to use smoothers to fit one-dimensional regressions!

Our new, improved backfitting algorithm in Example 2. Once again, while
it’s not obvious that this converges, it does converge. Also, the backfitting
procedure works well with some complications or refinements of the additive
model. If we know the function form of one or another of the fj , we can fit
those parametrically (rather than with the smoother) at the appropriate points
in the loop. (This would be a semiparametric model.) If we think that there
is an interaction between xj and xk, rather than their making separate additive
contributions, we can smooth them together; etc.

There are actually two packages standard packages for fitting additive models
in R: gam and mgcv. Both have commands called gam, which fit generalized
additive models — the generalization is to use the additive model for things
like the probabilities of categorical responses, rather than the response variable
itself. If that sounds obscure right now, don’t worry — we’ll come back to this
after we’ve looked at generalized linear models. The last section of this hand-out
illustrates using these packages to fit an additive model.

3 The Curse of Dimensionality

Before illustrating how additive models work in practice, let’s talk about why
we’d want to use them. So far, we have looked at two extremes for regression
models; additive models are somewhere in between.

On the one hand, we had linear regression, which is a parametric method
(with p + 1) parameters. Its weakness is that the true regression function r
is hardly ever linear, so even with infinite data it will always make systematic

4



Given: n× p inputs x
n× 1 responses y
tolerance 1� δ > 0
one-dimensional smoother S

α̂← n−1
∑n

i=1 yi

f̂j ← 0 for j ∈ 1 : p
until (all |f̂j − gj | ≤ δ) {

for k ∈ 1 : p {
y
(k)
i = yi −

∑
j 6=k f̂j(xij)

gk ← S(y(k) ∼ x·k)
gk ← gk − n−1

∑n
i=1 gk(xik)

f̂k ← gk

}
}
Return: (α̂, f̂1, . . . f̂p)

Code Example 2: Pseudo-code for backfitting additive models. Notice the
extra step, as compared to backfitting linear models, which keeps each partial
response function centered.

mistakes in its predictions — there’s always some approximation bias, bigger or
smaller depending on how non-linear r is. The strength of linear regression is
that it converges very quickly as we get more data. Generally speaking,

MSElinear = σ2 + alinear +O(n−1)

where the first term is the intrinsic noise around the true regression function,
the second term is the (squared) approximation bias, and the last term is the
estimation variance. Notice that the rate at which the estimation variance
shrinks doesn’t depend on p — factors like that are all absorbed into the big
O.4 Other parametric models generally converge at the same rate.

At the other extreme, we’ve seen a number of completely non-parametric re-
gression methods, such as kernel regression, local polynomials, k-nearest neigh-
bors, etc. Here the limiting approximation bias is actually zero, at least for
any reasonable regression function r. The problem is that they converge more
slowly, because we need to use the data not just to figure out the coefficients of
a parametric model, but the sheer shape of the regression function. Again gen-
erally speaking, the rate of convergence for these models is (Wasserman, 2006,
§5.12)

MSEnonpara − σ2 = O(n−4/(p+4))

There’s no approximation bias term here, just estimation variance.5 Why does
4See the appendix if you are not familiar with “big O” notation.
5To be careful: if we use, say, kernel regression, then at any finite n and bandwidth there

is some approximation bias, but this can be made arbitrarily small, and is actually absorbed
into the remaining big-O.
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the rate depend on p? Well, to give a very hand-wavy explanation, think of
the smoothing methods, where r̂(~x) is an average over yi for ~xi near ~x. In a p
dimensional space, the volume within ε of ~x is O(εp), so to get the same density
(points per unit volume) around ~x takes exponentially more data as p grows.
The appearance of the 4s is a little more mysterious, but can be resolved from
an error analysis of the kind we did for kernel density estimation in the notes
to lecture 6.

For p = 1, the non-parametric rate is O(n−4/5), which is of course slower
than O(n−1), but not all that much, and the improved bias usually more than
makes up for it. But as p grows, the non-parametric rate gets slower and
slower, and the fully non-parametric estimate more and more imprecise, yielding
the infamous curse of dimensionality. For p = 100, say, we get a rate of
O(n−1/26), which is not very good at all. Said another way, to get the same
precision with p inputs that n data points gives us with one input takes n(4+p)/5

data points. For p = 100, this is n20.8, which tells us that matching the error of
n = 100 one-dimensional observations requires O(4×1041) hundred-dimensional
observations.

So completely unstructured non-parametric regressions won’t work very well
in high dimensions, at least not with plausible amounts of data. The trouble
is that there are just too many possible high-dimensional surfaces, and seeing
only a million or a trillion points from the surface doesn’t pin down its shape
very well at all.

This is where additive models come in. Not every regression function is
additive, so they have, even asymptotically, some approximation bias. But we
can estimate each fj by a simple one-dimensional smoothing, which converges
at O(n−4/5), almost as good as the parametric rate. So overall

MSEadditive − σ2 = aadditive +O(n−4/5)

Since linear models are a sub-class of additive models, aadditive ≤ alm. From a
purely predictive point of view, the only time to prefer linear models to additive
models is when n is so small that O(n−4/5)−O(n−1) exceeds this difference in
approximation biases; eventually the additive model will be more accurate.6

6Unless the best additive approximation to r really is linear; then the linear model has no
more bias and better variance.
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4 Example: California House Prices Revisited

As an example, we’ll revisit the California house price data from the homework.

calif = read.table("~/teaching/402/hw/01/cadata.dat",header=TRUE)

Fitting a linear model is very fast (about 1/5 of a second on my laptop). Here
are the summary statistics:

> linfit = lm(log(MedianHouseValue) ~ ., data=calif)
> print(summary(linfit),signif.stars=FALSE)

Call:
lm(formula = log(MedianHouseValue) ~ ., data = calif)

Residuals:
Min 1Q Median 3Q Max

-2.517974 -0.203797 0.001589 0.194947 3.464100

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.180e+01 3.059e-01 -38.570 < 2e-16
MedianIncome 1.782e-01 1.639e-03 108.753 < 2e-16
MedianHouseAge 3.261e-03 2.111e-04 15.446 < 2e-16
TotalRooms -3.186e-05 3.855e-06 -8.265 < 2e-16
TotalBedrooms 4.798e-04 3.375e-05 14.215 < 2e-16
Population -1.725e-04 5.277e-06 -32.687 < 2e-16
Households 2.493e-04 3.675e-05 6.783 1.21e-11
Latitude -2.801e-01 3.293e-03 -85.078 < 2e-16
Longitude -2.762e-01 3.487e-03 -79.212 < 2e-16

Residual standard error: 0.34 on 20631 degrees of freedom
Multiple R-squared: 0.6432,Adjusted R-squared: 0.643
F-statistic: 4648 on 8 and 20631 DF, p-value: < 2.2e-16

Figure 1 plots the predicted prices, ±2 standard errors, against the actual prices.
The predictions are not all that accurate — the RMS residual is 0.340 on the
log scale (i.e., 41%), and only 3.3% of the actual prices fall within the prediction
bands.7 On the other hand, they are quite precise, with an RMS standard error
of 0.0071 (i.e., 0.71%). This linear model is pretty thoroughly converged.

7You might worry that the top-coding of the prices — all values over $500,000 are recorded
as $500,001 — means we’re not being fair to the model. After all, we see $500,001 and the
model predicts $600,000, the prediction might be right — it’s certainly right that it’s over
$500,000. To deal with this, I tried top-coding the predicted values, but it didn’t change
much — the RMS error for the linear model only went down to 0.332, and it was similarly
inconsequential for the others. Presumably this is because only about 5% of the records are
top-coded.
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predictions = predict(linfit,se.fit=TRUE)
plot(calif$MedianHouseValue,exp(predictions$fit),cex=0.1,

xlab="Actual price",ylab="Predicted")
segments(calif$MedianHouseValue,exp(predictions$fit-2*predictions$se.fit),

calif$MedianHouseValue,exp(predictions$fit+2*predictions$se.fit),
col="grey")

abline(a=0,b=1,lty=2)

Figure 1: Actual median house values (horizontal axis) versus those predicted
by the linear model (black dots), plus or minus two standard errors (grey bars).
The dashed line shows where actual and predicted prices would be equal. Note
that I’ve exponentiated the predictions so that they’re comparable to the original
values.
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Next, we’ll fit an additive model, using the gam function from the mgcv
package; this automatically sets the bandwidths using a fast approximation to
leave-one-out CV called generalized cross-validation, or GCV.

> require(mgcv)
> system.time(addfit <- gam(log(MedianHouseValue) ~ s(MedianIncome)

+ s(MedianHouseAge) + s(TotalRooms)
+ s(TotalBedrooms) + s(Population) + s(Households)
+ s(Latitude) + s(Longitude), data=calif))

user system elapsed
41.144 1.929 44.487

(That is, it took almost a minute in total to run this.) The s() terms in the
gam formula indicate which terms are to be smoothed — if we wanted particular
parametric forms for some variables, we could do that as well. (Unfortunately
MedianHouseValue ∼ s(.) will not work.) The smoothing here is done by
splines, and there are lots of options for controlling the splines, if you know
what you’re doing.

Figure 2 compares the predicted to the actual responses. The RMS error
has improved (0.29 on the log scale, or 33%, with 9.5% of observations falling
with ±2 standard errors of their fitted values), at only a fairly modest cost in
precision (the RMS standard error of prediction is 0.016, or 1.6%). Figure 3
shows the partial response functions.

It seems silly to have latitude and longitude make separate additive contri-
butions here; presumably they interact. We can just smooth them together8:

addfit2 <- gam(log(MedianHouseValue) ~ s(MedianIncome) + s(MedianHouseAge)
+ s(TotalRooms) +s(TotalBedrooms) + s(Population) + s(Households)
+ s(Longitude,Latitude), data=calif)

This gives an RMS error of ±31% (with 11% coverage), with no decrease in the
precision of the predictions (at least to two figures).

Figures 5 and 6 show two different views of the joint smoothing of longitude
and latitude. In the perspective plot, it’s quite clear that price increases specif-
ically towards the coast, and even more specifically towards the great coastal
cities. In the contour plot, one sees more clearly an inward bulge of a negative,
but not too very negative, contour line (between -122 and -120 longitude) which
embraces Napa, Sacramento, and some related areas, which are comparatively
more developed and more expensive than the rest of central California, and so
more expensive than one would expect based on their distance from the coast
and San Francisco.

The fact that the prediction intervals have such bad coverage is partly due
to their being based on Gaussian approximations. Still, ±2 standard errors
should cover at least 25% of observations9, which is manifestly failing here. This

8If the two variables which interact are on very different scales, it’s better to smooth them
with a te() term than an s() term — see help(gam.models) — but here they are comparable.

9By Chebyshev’s inequality: P (|X −E [X]| ≥ aσ) ≤ 1/a2, where σ is the standard devia-
tion of X.
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predictions = predict(addfit,se.fit=TRUE)
plot(calif$MedianHouseValue,exp(predictions$fit),cex=0.1,

xlab="Actual price",ylab="Predicted")
segments(calif$MedianHouseValue,exp(predictions$fit-2*predictions$se.fit),

calif$MedianHouseValue,exp(predictions$fit+2*predictions$se.fit),
col="grey")

abline(a=0,b=1,lty=2)

Figure 2: Actual versus predicted prices for the additive model, as in Figure 1.
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plot(addfit,scale=0,se=2,shade=TRUE,resid=TRUE,pages=1)

Figure 3: The estimated partial response functions for the additive model, with
a shaded region showing ±2 standard errors, and dots for the actual partial
residuals. The tick marks along the horizontal axis show the observed values
of the input variables (a rug plot); note that the error bars are wider where
there are fewer observations. Setting pages=0 (the default) would produce eight
separate plots, with the user prompted to cycle through them. Setting scale=0
gives each plot its own vertical scale; the default is to force them to share the
same one. Finally, note that here the vertical scale is logarithmic.
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plot(addfit2,scale=0,se=2,shade=TRUE,resid=TRUE,pages=1)

Figure 4: Partial response functions and partial residuals for addfit2, as in Fig-
ure 3. See subsequent figures for the joint smoothing of longitude and latitude,
which here is an illegible mess.
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plot(addfit2,select=7,phi=60,pers=TRUE)

Figure 5: The result of the joint smoothing of longitude and latitude.
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s(Longitude,Latitude,28.82)
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plot(addfit2,select=7,se=FALSE)

Figure 6: The result of the joint smoothing of longitude and latitude. Setting
se=TRUE, the default, adds standard errors for the contour lines in multiple
colors. Again, note that these are log units.
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suggests substantial remaining bias. One of the standard strategies for trying
to reduce such bias is to allow more interactions. We will see automatic ways of
doing this, in later lectures, where we can still get some sort of interpretation
of results.

We could, of course, just use a completely unrestricted nonparametric re-
gression — going to the opposite extreme from the linear model. Unfortunately,
when I throw npreg at the problem,

calif.bw <- npregbw(log(MedianHouseValue) ~., data=calif,type="ll")

R is still working after ten hours of processor time.

5 Closing Modeling Advice

With modern computing power, there are very few situations in which it is
actually better to do linear regression than to fit an additive model. In fact,
there seem to be only two good reasons to prefer linear models.

1. Our data analysis is guided by a credible scientific theory which asserts
linear relationships among the variables we measure (not others, for which
our observables serve as imperfect proxies).

2. Our data set is so massive that the extra processing time to fit an addi-
tive rather than a linear model is prohibitive; or perhaps it is the extra
computer memory needed to store the fitted model.

Even when the first reason applies, and we have good reasons to believe a linear
theory, the truly scientific thing to do would be to check linearity, as described
in lecture 10, by fitting a non-linear model. (The discussion in lecture 10 about
comparing parametric models to non-parametric models applies without modi-
fication to using additive models as the non-parametric alternative.) Even when
the second reason applies, we would like to know how much bias we’re intro-
ducing by using linear predictors, which we could do by randomly selecting
a subset of the data which is small enough for us to manage, and fitting an
additive model.

In the vast majority of cases when users of statistical software fit linear
models, neither of these reasons applies. Linear regression is then employed for
no better reason than that users know how to type lm but not gam. You now
know better, and can spread the word.

References
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Figure 7: Maps of real or fitted prices: actual, top left; linear model, top right;
first additive model, bottom right; additive model with interaction, bottom left.
Categories are deciles of the actual prices; since those are the same for all four
plots, it would have been nicer to make one larger legend, but that was beyond
my graphical abilities.
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A Big O and Little o Notation

It is often useful to talk about the rate at which some function changes as its
argument grows (or shrinks), without worrying to much about the detailed form.
This is what the O(·) and o(·) notation lets us do.

A function f(n) is “of constant order”, or “of order 1” when there exists
some non-zero constant c such that

f(n)
c
→ 1

as n → ∞; equivalently, since c is a constant, f(n) → c as n → ∞. It doesn’t
matter how big or how small c is, just so long as there is some such constant.
We then write

f(n) = O(1)

and say that “the proportionality constant c gets absorbed into the big O”.
For example, if f(n) = 37, then f(n) = O(1). But if g(n) = 37(1 − 2

n ), then
g(n) = O(1) also.

The other orders are defined recursively. Saying

g(n) = O(f(n))

means
g(n)
f(n)

= O(1)

or
g(n)
f(n)

→ c

as n→∞— that is to say, g(n) is “of the same order” as f(n), and they “grow
at the same rate”, or “shrink at the same rate”. For example, a quadratic
function a1n

2 + a2n+ a3 = O(n2), no matter what the coefficients are. On the
other hand, b1n−2 + b2n

−1 is O(n−1).
Big-O means “is of the same order as”. The corresponding little-o means “is

ultimately smaller than”: f(n) = o(1) means that f(n)/c→ 0 for any constant
c. Recursively, g(n) = o(f(n)) means g(n)/f(n) = o(1), or g(n)/f(n)→ 0. We
also read g(n) = o(f(n)) as “g(n) is ultimately negligible compared to f(n)”.

There are some rules for arithmetic with big-O symbols:

• If g(n) = O(f(n)), then cg(n) = O(f(n)) for any constant c.

• If g1(n) and g2(n) are both O(f(n)), then so is g1(n) + g2(n).

• If g1(n) = O(f(n)) but g2(n) = o(f(n)), then g1(n) + g2(n) = O(f(n)).

• If g(n) = O(f(n)), and f(n) = o(h(n)), then g(n) = o(h(n)).

These are not all of the rules, but they’re enough for most purposes.
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