
14. Logistic Regression and Newton’s Method

36-402, Advanced Data Analysis

15 March 2011

Reading: Faraway, Chapter 2, omitting sections 2.11 and 2.12

Contents

1 Modeling Conditional Probabilities 1

2 Logistic Regression 3
2.1 Likelihood Function for Logistic Regression 6
2.2 Logistic Regression with More Than Two Classes 6

3 Newton’s Method for Numerical Optimization 7
3.1 Newton’s Method in More than One Dimension 9
3.2 Iteratively Re-Weighted Least Squares 10

4 Generalized Linear Models and Generalized Additive Models 11
4.1 Generalized Additive Models . 12
4.2 An Example (Including Model Checking) 12

1 Modeling Conditional Probabilities

So far, we either looked at estimating the conditional expectations of continuous
variables (as in regression), or at estimating distributions. There are many
situations where however we are interested in input-output relationships, as
in regression, but the output variable is discrete rather than continuous. In
particular there are many situations where we have binary outcomes (it snows
in Pittsburgh on a given day, or it doesn’t; this squirrel carries plague, or it
doesn’t; this loan will be paid back, or it won’t; this person will get heart disease
in the next five years, or they won’t). In addition to the binary outcome, we
have some input variables, which may or may not be continuous. How could we
model and analyze such data?

We could try to come up with a rule which guesses the binary output from
the input variables. This is called classification, and is an important topic
in statistics and machine learning. However, simply guessing “yes” or “no” is
pretty crude — especially if there is no perfect rule. (Why should there be?)

1

Something which takes noise into account, and doesn’t just give a binary answer,
will often be useful. In short, we want probabilities — which means we need to
fit a stochastic model.

What would be nice, in fact, would be to have conditional distribution of
the response Y , given the input variables, Pr (Y |X). This would tell us about
how precise our predictions are. If our model says that there’s a 51% chance
of snow and it doesn’t snow, that’s better than if it had said there was a 99%
chance of snow (though even a 99% chance is not a sure thing). We have seen
how to estimate conditional probabilities non-parametrically, and could do this
using the kernels for discrete variables from lecture 6. While there are a lot of
merits to this approach, it does involve coming up with a model for the joint
distribution of outputs Y and inputs X, which can be quite time-consuming.

Let’s pick one of the classes and call it “1” and the other “0”. (It doesn’t
matter which is which. Then Y becomes an indicator variable, and you
can convince yourself that Pr (Y = 1) = E [Y]. Similarly, Pr (Y = 1|X = x) =
E [Y |X = x]. (In a phrase, “conditional probability is the conditional expecta-
tion of the indicator”.) This helps us because by this point we know all about
estimating conditional expectations. The most straightforward thing for us to
do at this point would be to pick out our favorite smoother and estimate the
regression function for the indicator variable; this will be an estimate of the
conditional probability function.

There are two reasons not to just plunge ahead with that idea. One is that
probabilities must be between 0 and 1, but our smoothers will not necessarily
respect that, even if all the observed yi they get are either 0 or 1. The other is
that we might be better off making more use of the fact that we are trying to
estimate probabilities, by more explicitly modeling the probability.

Assume that Pr (Y = 1|X = x) = p(x; θ), for some function p parameter-
ized by θ. parameterized function θ, and further assume that observations are
independent of each other. The the (conditional) likelihood function is

n∏
i=1

Pr (Y = yi|X = xi) =
n∏
i=1

p(xi; θ)yi(1− p(xi; θ)1−yi)

Recall that in a sequence of Bernoulli trials y1, . . . yn, where there is a con-
stant probability of success p, the likelihood is

n∏
i=1

pyi(1− p)1−yi

As you learned in intro. stats, this likelihood is maximized when p = p̂ =
n−1

∑n
i=1 yi. If each trial had its own success probability pi, this likelihood

becomes
n∏
i=1

pyi

i (1− pi)1−yi

Without some constraints, estimating the “inhomogeneous Bernoulli” model by
maximum likelihood doesn’t work; we’d get p̂i = 1 when yi = 1, p̂i = 0 when

2

yi = 0, and learn nothing. If on the other hand we assume that the pi aren’t
just arbitrary numbers but are linked together, those constraints give non-trivial
parameter estimates, and let us generalize. In the kind of model we are talking
about, the constraint, pi = p(xi; θ), tells us that pi must be the same whenever
xi is the same, and if p is a continuous function, then similar values of xi
must lead to similar values of pi. Assuming p is known (up to parameters), the
likelihood is a function of θ, and we can estimate θ by maximizing the likelihood.
This lecture will be about this approach.

2 Logistic Regression

To sum up: we have a binary output variable Y , and we want to model the
conditional probability Pr (Y = 1|X = x) as a function of x; any unknown pa-
rameters in the function are to be estimated by maximum likelihood. By now,
it will not surprise you to learn that statisticians have approach this problem
by asking themselves “how can we use linear regression to solve this?”

1. The most obvious idea is to let p(x) be a linear function of x. Every
increment of a component of x would add or subtract so much to the
probability. The conceptual problem here is that p must be between 0
and 1, and linear functions are unbounded.

2. The next most obvious idea is to let log p(x) be a linear function of x,
so that changing an input variable multiplies the probability by a fixed
amount. The problem is that logarithms are unbounded in only one di-
rection, and linear functions are not.

3. Finally, the easiest modification of log p which has an unbounded range
is the logistic (or logit) transformation, log p

1−p . We can make this
a linear function of x without fear of nonsensical results. (Of course the
results could still happen to be wrong, but they’re not guaranteed to be
wrong.)

This last alternative is logistic regression.
Formally, the model logistic regression model is that

log
p(x)

1− p(x)
= β0 + x · β (1)

Solving for p, this gives

p(x; b, w) =
eβ0+x·β

1 + eβ0+x·β
=

1
1 + e−(β0+x·β)

(2)

Notice that the over-all specification is a lot easier to grasp in terms of the
transformed probability that in terms of the untransformed probability.1

1Unless you’ve taken statistical mechanics, in which case you recognize that this is the
Boltzmann distribution for a system with two states, which differ in energy by β0 + x · β.

3

To minimize the mis-classification rate, we should predict Y = 1 when p ≥
0.5 and Y = 0 when p < 0.5. This means guessing 1 whenever β0 + x · β is non-
negative, and 0 otherwise. So logistic regression gives us a linear classifier.
The decision boundary separating the two predicted classes is the solution
of β0 + x · β = 0, which is a point if x is one dimensional, a line if it is two
dimensional, etc. One can show (exercise!) that the distance from the decision
boundary is β0/‖β‖ + x · β/‖β‖. So logistic regression not only says where
the boundary between the classes is, but also says (via Eq. 2) that the class
probabilities depend on distance from the boundary, in a particular way, and
that they go towards the extremes (0 and 1) more rapidly when ‖β‖ is larger.
It’s these statements about probabilities which make logistic regression more
than just a linear classifier. It makes stronger, more detailed predictions, and
can be fit in a different way; but those strong predictions could be wrong.

Using logistic regression to predict class probabilities is a modeling choice,
just like it’s a modeling choice to predict quantitative variables with linear
regression. In neither case is the appropriateness of the model guaranteed by
the gods, nature, mathematical necessity, etc. We begin by positing the model,
to get something to work with, and we end (if we know what we’re doing) by
checking whether it really does match the data, or whether it has systematic
flaws.

Logistic regression is one of the most commonly used tools for applied statis-
tics and discrete data analysis. There are basically four reasons for this.

1. Tradition.

2. In addition to the heuristic approach above, the quantity log p/(1− p)
plays an important role in the analysis of contingency tables (the “log
odds”). Classification is a bit like having a contingency table with two
columns (classes) and infinitely many rows (values of x). With a finite
contingency table, we can estimate the log-odds for each row empirically,
by just taking counts in the table. With infinitely many rows, we need
some sort of interpolation scheme; logistic regression is linear interpolation
for the log-odds.

3. It’s closely related to “exponential family” distributions, where the prob-
ability of some vector v is proportional to expβ0 +

∑m
j=1 fj(v)βj . If one

of the components of v is binary, and the functions fj are all the identity
function, then we get a logistic regression. Exponential families arise in
many contexts in statistical theory (and in physics!), so there are lots of
problems which can be turned into logistic regression.

4. It often works surprisingly well as a classifier. But, many simple techniques
often work surprisingly well as classifiers, and this doesn’t really testify to
logistic regression getting the probabilities right.

4

-

+
-

+ +

+

- +

-

+

+

+

+

- -

-

-

+

+

-

+
++

-

+

-

+

+

-

-
+

+

- +

+

-

-

+

+
-

+

+ -

+-
+

-

+

-+

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Logistic regression with b=-0.1, w=(-.2,.2)

x[,1]

x[
,2
]

-

+
+

+ +

+

+ -

+

+

-

-

-

- -

+

-

-

-

+

-
--

-

-

-

+

-

-

+
+

+

- -

+

+

-

+

-
-

+

+ -

-+ -

+
+

--

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Logistic regression with b=-0.5, w=(-1,1)

x[,1]

x[
,2
]

-

-
-

- -

+

- -

+

+

-

-

-

+ -

-

+

+

-

+

-
--

-

-

-

+

+

-

-
-

-

- -

+

+

-

-

-
-

+

+ +

-+ -

+
+

--

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Logistic regression with b=-2.5, w=(-5,5)

x[,1]

x[
,2
]

-

-
-

- -

+

- -

+

+

-

-

-

+ -

-

+

+

-

-

+
--

-

-

-

+

+

-

-
-

+

- -

+

+

-

-

-
-

-

+ +

-+ -

+
+

--

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Linear classifier with b=
1
2 2

,w=

−1
2
,
1
2

x[,1]

x[
,2
]

Figure 1: Effects of scaling logistic regression parameters. Values of x1 and x2

are the same in all plots (∼ Unif(−1, 1) for both coordinates), but labels were
generated randomly from logistic regressions with β0 = −0.1, β = (−0.2, 0.2)
(top left); from β0 = −0.5, β = (−1, 1) (top right); from β0 = −2.5, β = (−5, 5)
(bottom left); and from a perfect linear classifier with the same boundary. The
large black dot is the origin.

5

2.1 Likelihood Function for Logistic Regression

Because logistic regression predicts probabilities, rather than just classes, we
can fit it using likelihood. For each training data-point, we have a vector of
features, xi, and an observed class, yi. The probability of that class was either
p, if yi = 1, or 1− p, if yi = 0. The likelihood is then

L(β0, β) =
n∏
i=1

p(xi)yi(1− p(xi)1−yi (3)

(I could substitute in the actual equation for p, but things will be clearer in a
moment if I don’t.) The log-likelihood turns products into sums:

`(β0, β) =
n∑
i=1

yi log p(xi) + (1− yi) log 1− p(xi) (4)

=
n∑
i=1

log 1− p(xi) +
n∑
i=1

yi log
p(xi)

1− p(xi)
(5)

=
n∑
i=1

log 1− p(xi) +
n∑
i=1

yi(β0 + xi · β) (6)

=
n∑
i=1

− log 1 + eβ0+xi·β +
n∑
i=1

yi(β0 + xi · β) (7)

where in the next-to-last step we finally use equation 1.
Typically, to find the maximum likelihood estimates we’d differentiate the

log likelihood with respect to the parameters, set the derivatives equal to zero,
and solve. To start that, take the derivative with respect to one component of
β, say βj .

∂`

∂βj
= −

n∑
i=1

1
1 + eβ0+xi·β

eβ0+xi·βxij +
n∑
i=1

yixij (8)

=
n∑
i=1

(yi − p(xi;β0, β))xij (9)

We are not going to be able to set this to zero and solve exactly. (That’s a
transcendental equation, and there is no closed-form solution.) We can however
approximately solve it numerically.

2.2 Logistic Regression with More Than Two Classes

If Y can take on more than two values, we can still use logistic regression.
Instead of having one set of parameters β0, β, each class c will have its own
offset β(c)

0 and vector β(c), and the predicted conditional probabilities will be

Pr
(
Y = c| ~X = x

)
=

eβ
(c)
0 +x·β(c)∑

c e
β

(c)
0 +x·β(c)

(10)

6

It can be shown that when there are only two classes (say, 0 and 1), equation
10 reduces to equation 2, with β0 = β

(1)
0 −β

(0)
0 and β = β(1)−β(0). (Exercise:

Show this.) In fact, no matter how many classes there are, we can always pick
one of them, say c = 0, and fix its parameters at exactly zero, without any loss
of generality. (Exercise: Show this.)

Calculation of the likelihood now proceeds as before (only with more book-
keeping), and so does maximum likelihood estimation.

3 Newton’s Method for Numerical Optimization

There are a huge number of methods for numerical optimization; we can’t cover
all bases, and there is no magical method which will always work better than
anything else. However, there are some methods which work very well on an
awful lot of the problems which keep coming up, and it’s worth spending a
moment to sketch how they work. One of the most ancient yet important of
them is Newton’s method (alias “Newton-Raphson”).

Let’s start with the simplest case of minimizing a function of one scalar
variable, say f(β). We want to find the location of the global minimum, β∗. We
suppose that f is smooth, and that β∗ is a regular interior minimum, meaning
that the derivative at β∗ is zero and the second derivative is positive. Near the
minimum we could make a Taylor expansion:

f(β) ≈ f(β∗) +
1
2

(β − β∗)2 d
2f

dβ2

∣∣∣∣
β=β∗

(11)

(We can see here that the second derivative has to be positive to ensure that
f(β) > f(β∗).) In words, f(β) is close to quadratic near the minimum.

Newton’s method uses this fact, and minimizes a quadratic approximation
to the function we are really interested in. (In other words, Newton’s method
is to replace the problem we want to solve, with a problem which we can solve.)
Guess an initial point β(0). If this is close to the minimum, we can take a second
order Taylor expansion around β(0) and it will still be accurate:

f(β) ≈ f(β(0)) + (β − β(0))
df

dw

∣∣∣∣
β=β(0)

+
1
2

(
β − β(0)

)2 d2f

dw2

∣∣∣∣
β=β(0)

(12)

Now it’s easy to minimize the right-hand side of equation 12. Let’s abbreviate
the derivatives, because they get tiresome to keep writing out: df

dw

∣∣∣
β=β(0)

=

f ′(β(0)), d2f
dw2

∣∣∣
β=β(0)

= f ′′(β(0)). We just take the derivative with respect to β,

and set it equal to zero at a point we’ll call β(1):

0 = f ′(β(0)) +
1
2
f ′′(β(0))2(β(1) − β(0)) (13)

β(1) = β(0) − f ′(β(0))
f ′′(β(0))

(14)

7

The value β(1) should be a better guess at the minimum β∗ than the initial
one β(0) was. So if we use it to make a quadratic approximation to f , we’ll get
a better approximation, and so we can iterate this procedure, minimizing one
approximation and then using that to get a new approximation:

β(n+1) = β(n) − f ′(β(n))
f ′′(β(n))

(15)

Notice that the true minimum β∗ is a fixed point of equation 15: if we happen
to land on it, we’ll stay there (since f ′(β∗) = 0). We won’t show it, but it can
be proved that if β(0) is close enough to β∗, then β(n) → β∗, and that in general
|β(n) − β∗| = O(n−2), a very rapid rate of convergence. (Doubling the number
of iterations we use doesn’t reduce the error by a factor of two, but by a factor
of four.)

8

Let’s put this together in an algorithm.

my.newton = function(f,f.prime,f.prime2,beta0,tolerance=1e-3,max.iter=50) {
beta = beta0
old.f = f(beta)
iterations = 0
made.changes = TRUE
while(made.changes & (iterations < max.iter)) {
iterations <- iterations +1
made.changes <- FALSE
new.beta = beta - f.prime(beta)/f.prime2(beta)
new.f = f(new.beta)
relative.change = abs(new.f - old.f)/old.f -1
made.changes = (relative.changes > tolerance)
beta = new.beta
old.f = new.f
}
if (made.changes) {
warning("Newton’s method terminated before convergence")

}
return(list(minimum=beta,value=f(beta),deriv=f.prime(beta),

deriv2=f.prime2(beta),iterations=iterations,
converged=!made.changes))

}

The first three arguments here have to all be functions. The fourth argument
is our initial guess for the minimum, β(0). The last arguments keep Newton’s
method from cycling forever: tolerance tells it to stop when the function stops
changing very much (the relative difference between f(β(n)) and f(β(n+1)) is
small), and max.iter tells it to never do more than a certain number of steps
no matter what. The return value includes the estmated minimum, the value of
the function there, and some diagnostics — the derivative should be very small,
the second derivative should be positive, etc.

You may have noticed some potential problems — what if we land on a
point where f ′′ is zero? What if f(β(n+1)) > f(β(n))? Etc. There are ways of
handling these issues, and more, which are incorporated into real optimization
algorithms from numerical analysis — such as the optim function in R; I strongly
recommend you use that, or something like that, rather than trying to roll your
own optimization code.2

3.1 Newton’s Method in More than One Dimension

Suppose that the objective f is a function of multiple arguments, f(β1, β2, . . . βp).
Let’s bundle the parameters into a single vector, w. Then the Newton update

2optim actually is a wrapper for several different optimization methods; method=BFGS selects
a Newtonian method; BFGS is an acronym for the names of the algorithm’s inventors.

9

is
β(n+1) = β(n) −H−1(β(n))∇f(β(n)) (16)

where∇f is the gradient of f , its vector of partial derivatives [∂f/∂β1, ∂f/∂β2, . . . ∂f/∂βp],
and H is the Hessian of f , its matrix of second partial derivatives, Hij =
∂2f/∂βi∂βj .

Calculating H and ∇f isn’t usually very time-consuming, but taking the
inverse of H is, unless it happens to be a diagonal matrix. This leads to various
quasi-Newton methods, which either approximate H by a diagonal matrix,
or take a proper inverse of H only rarely (maybe just once), and then try to
update an estimate of H−1(β(n)) as β(n) changes.

3.2 Iteratively Re-Weighted Least Squares

This discussion of Newton’s method is quite general, and therefore abstract.
In the particular case of logistic regression, we can make everything look much
more “statistical”.

Logistic regression, after all, is a linear model for a transformation of the
probability. Let’s call this transformation g:

g(p) ≡ log
p

1− p

So the model is
g(p) = β0 + x · β

and Y |X = x ∼ Binom(1, g−1(β0 + x · β)). It seems that what we should
want to do is take g(y) and regress it linearly on x. Of course, the variance
of Y , according to the model, is going to chance depending on x — it will be
(g−1(β0 +x ·β))(1−g−1(β0 +x ·β)) — so we really ought to do a weighted linear
regression, with weights inversely proportional to that variance. Since writing
β0 + x · β is getting annoying, let’s abbreviate it by µ (for “mean”), and let’s
abbreviate that variance as V (µ).

The problem is that y is either 0 or 1, so g(y) is either −∞ or +∞. We will
evade this by using Taylor expansion.

g(y) ≈ g(µ) + (y − µ)g′(µ) ≡ z

The right hand side, z will be our effective response variable. To regress it, we
need its variance, which by propagation of error will be (g′(µ))2V (µ).

Notice that both the weights and z depend on the parameters of our logistic
regression, through µ. So having done this once, we should really use the new
parameters to update z and the weights, and do it again. Eventually, we come
to a fixed point, where the parameter estimates no longer change.

The treatment above is rather heuristic3, but it turns out to be equivalent
to using Newton’s method, with the expected second derivative of the log like-

3That is, mathematically incorrect.

10

lihood, instead of its actual value.4 Since, with a large number of observations,
the observed second derivative should be close to the expected second derivative,
this is only a small approximation.

4 Generalized Linear Models and Generalized
Additive Models

Logistic regression is part of a broader family of generalized linear mod-
els (GLMs), where the conditional distribution of the response falls in some
parametric family, and the parameters are set by the linear predictor. Ordi-
nary, least-squares regression is the case where response is Gaussian, with mean
equal to the linear predictor, and constant variance. Logistic regression is the
case where the response is binomial, with n equal to the number of data-points
with the given x (often but not always 1), and p is given by Equation 2. Chang-
ing the relationship between the parameters and the linear predictor is called
changing the link function. For computational reasons, the link function is
actually the function you apply to the mean response to get back the linear pre-
dictor, rather than the other way around — (1) rather than (2). There are thus
other forms of binomial regression besides logistic regression.5 There is also
Poisson regression (appropriate when the data are counts without any upper
limit), gamma regression, etc.; we will say more about these next time.

In R, any standard GLM can be fit using the (base) glm function, whose
syntax is very similar to that of lm. The major wrinkle is that, of course, you
need to specify the family of probability distributions to use, by the family
option — family=binomial defaults to logistic regression. (See help(glm) for
the gory details on how to do, say, probit regression.) All of these are fit by the
same sort of numerical likelihood maximization.

One caution about using maximum likelihood to fit logistic regression is that
it can seem to work badly when the training data can be linearly separated. The
reason is that, to make the likelihood large, p(xi) should be large when yi = 1,
and p should be small when yi = 0. If β0, β0 is a set of parameters which
perfectly classifies the training data, then cβ0, cβ is too, for any c > 1, but
in a logistic regression the second set of parameters will have more extreme
probabilities, and so a higher likelihood. For linearly separable data, then,
there is no parameter vector which maximizes the likelihood, since ` can always
be increased by making the vector larger but keeping it pointed in the same
direction.

4This takes a reasonable amount of algebra to show, so we’ll skip it. The key point
however is the following. Take a single Bernoulli observation with success probability p.
The log-likelihood is Y log p + (1 − Y) log 1 − p. The first derivative with respect to p is
Y/p − (1 − Y)/(1 − p), and the second derivative is −Y/p2 − (1 − Y)/(1 − p)2. Taking
expectations gives −1/p− 1/(1− p) = −1/p(1− p). In other words, V (p) = −1/E [`′′]. Using
weights inversely proportional to the variance thus turns out to be equivalent to dividing by
the expected second derivative.

5My experience is that these tend to give similar error rates as classifiers, but have rather
different guesses about the underlying probabilities.

11

You should, of course, be so lucky as to have this problem.

4.1 Generalized Additive Models

A natural step beyond generalized linear models is generalized additive mod-
els (GAMs), where instead of making the transformed mean response a linear
function of the inputs, we make it an additive function of the inputs. This means
combining a function for fitting additive models with likelihood maximization.
The R function here is gam, from the CRAN package of the same name. (Alter-
nately, use the function gam in the package mgcv, which is part of the default R
installation.)

GAMs can be used to check GLMs in much the same way that smoothers
can be used to check parametric regressions: fit a GAM and a GLM to the same
data, then simulate from the GLM, and re-fit both models to the simulated data.
Repeated many times, this gives a distribution for how much better the GAM
will seem to fit than the GLM does, even when the GLM is true. You can then
read a p-value off of this distribution.

4.2 An Example (Including Model Checking)

Here’s a worked R example, using the data from the upper right panel of Figure
1. The 50 × 2 matrix x holds the input variables (the coordinates are inde-
pendently and uniformly distributed on [−1, 1]), and y.1 the corresponding
class labels, themselves generated from a logistic regression with β0 = −0.5,
β = (−1, 1).

> logr = glm(y.1 ~ x[,1] + x[,2], family=binomial)
> logr

Call: glm(formula = y.1 ~ x[, 1] + x[, 2], family = binomial)

Coefficients:
(Intercept) x[, 1] x[, 2]

-0.410 -1.050 1.366

Degrees of Freedom: 49 Total (i.e. Null); 47 Residual
Null Deviance: 68.59
Residual Deviance: 58.81 AIC: 64.81
> sum(ifelse(logr$fitted.values<0.5,0,1) != y.1)/length(y.1)
[1] 0.32

The deviance of a model fitted by maximum likelihood is (twice) the differ-
ence between its log likelihood and the maximum log likelihood for a saturated
model, i.e., a model with one parameter per observation. Hopefully, the sat-
urated model can give a perfect fit.6 Here the saturated model would assign

6The factor of two is so that the deviance will have a χ2 distribution. Specifically, if the
model with p parameters is right, the deviance will have a χ2 distribution with n− p degrees

12

probability 1 to the observed outcomes7, and the logarithm of 1 is zero, so
D = 2`(β̂0, β̂). The null deviance is what’s achievable by using just a constant
bias b and setting w = 0. The fitted model definitely improves on that.8

The fitted values of the logistic regression are the class probabilities; this
shows that the error rate of the logistic regression, if you force it to predict
actual classes, is 32%. This sounds bad, but notice from the contour lines in
the figure that lots of the probabilities are near 0.5, meaning that the classes
are just genuinely hard to predict.

To see how well the logistic regression assumption holds up, let’s compare
this to a GAM.

> gam.1 = gam(y.1~lo(x[,1])+lo(x[,2]),family="binomial")
> gam.1
Call:
gam(formula = y.1 ~ lo(x[, 1]) + lo(x[, 2]), family = "binomial")

Degrees of Freedom: 49 total; 41.39957 Residual
Residual Deviance: 49.17522

This fits a GAM to the same data, using lowess smoothing of both input vari-
ables. Notice that the residual deviance is lower. That is, the GAM fits better.
We expect this; the question is whether the difference is significant, or within
the range of what we should expect when logistic regression is valid. To test
this, we need to simulate from the logistic regression model.

simulate.from.logr = function(x, coefs) {
require(faraway) # For accessible logit and inverse-logit functions
n = nrow(x)
linear.part = coefs[1] + x %*% coefs[-1]
probs = ilogit(linear.part) # Inverse logit
y = rbinom(n,size=1,prob=probs)
return(y)

}

Now we simulate from our fitted model, and re-fit both the logistic regression
and the GAM.

delta.deviance.sim = function (x,logistic.model) {
y.new = simulate.from.logr(x,logistic.model$coefficients)
GLM.dev = glm(y.new ~ x[,1] + x[,2], family="binomial")$deviance

of freedom.
7This is not possible when there are multiple observations with the same input features,

but different classes.
8AIC is of course the Akaike information criterion, −2` + 2q, with q being the number

of parameters (here, q = 3). AIC has some truly devoted adherents, especially among non-
statisticians, but I have been deliberately ignoring it and will continue to do so. Claeskens
and Hjort (2008) is a thorough, modern treatment of AIC and related model-selection criteria
from a statistical viewpoint.

13

GAM.dev = gam(y.new ~ lo(x[,1]) + lo(x[,2]), family="binomial")$deviance
return(GLM.dev - GAM.dev)

}

Notice that in this simulation we are not generating new ~X values. The logistic
regression and the GAM are both models for the response conditional on the
inputs, and are agnostic about how the inputs are distributed, or even whether
it’s meaningful to talk about their distribution.

Finally, we repeat the simulation a bunch of times, and see where the ob-
served difference in deviances falls in the sampling distribution.

> delta.dev = replicate(1000,delta.deviance.sim(x,logr))
> delta.dev.observed = logr$deviance - gam.1$deviance # 9.64
> sum(delta.dev.observed > delta.dev)/1000
[1] 0.685

In other words, the amount by which a GAM fits the data better than logistic
regression is pretty near the middle of the null distribution. Since the example
data really did come from a logistic regression, this is a relief.

References

Claeskens, Gerda and Nils Lid Hjort (2008). Model Selection and Model Aver-
aging . Cambridge, England: Cambridge University Press.

14

0 10 20 30

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Amount by which GAM fits better than logistic regression

Sampling distribution under logistic regression
N = 1000 Bandwidth = 0.8386

D
en
si
ty

Figure 2: Sampling distribution for the difference in deviance between a GAM
and a logistic regression, on data generated from a logistic regression. The
observed difference in deviances is shown by the dashed horizontal line.

15

	Modeling Conditional Probabilities
	Logistic Regression
	Likelihood Function for Logistic Regression
	Logistic Regression with More Than Two Classes

	Newton's Method for Numerical Optimization
	Newton's Method in More than One Dimension
	Iteratively Re-Weighted Least Squares

	Generalized Linear Models and Generalized Additive Models
	Generalized Additive Models
	An Example (Including Model Checking)

