16. A Logistic Regression Illustration

36-402, Advanced Data Analysis
22 March 2011

The first part of lecture today was review and reinforcement of the gen-
eral ideas about logistic regression and other GLMs from the previous lectures.
These notes elaborate on the example I did in class, of building and testing a
GLM (specifically, a logistic regression model) for a particular data set.

Specifically, we are going to build a simple weather forecaster. Our data
consist of daily records, from the beginning of 1948 to the end of 1983, of pre-
cipitation at Snoqualmie Falls, WashingtOIﬂ Each row of the data file is a
different year; each column records, for that day of the year, the day’s precipi-
tation (rain or snow), in units of —1= inch. Because of leap-days, there are 366

100
columns, with the last column having an NA value for three out of four years.

snoqualmie <- read.csv("snoqualmie.csv",header=FALSE)
snoqualmie <- unlist(snoqualmie) # Turn into one big vector without year breaks
snoqualmie <- na.omit(snoqualmie) # Remove NAs from non-leap-years

What we want to do is predict tomorrow’s weather from today’s. This
would be of interest if we lived in Snoqualmie Falls, or if we operated either
one of the local hydroelectric power plants, or the tourist attraction of the Falls
themselves. Examining the distribution of the data (Figures |1| and shows
that there is a big spike in the distribution at zero precipitation, and that days
of no precipitation can follow days of any amount of precipitation but seem to
be less common after heavy precipitation.

These facts suggest that “no precipitation” is a special sort of event which
would be worth predicting in its own right (as opposed to just being when
the precipitation happens to be zero), so we will attempt to do so with logistic
regression. Specifically, the input variable X; will be the amount of precipitation
on the i*" day, and the response Y; will be the indicator variable for whether
there was any precipitation on day ¢4+1 — thatis, Y; = 1if X;;,1 >0,anY; =0
if X;11 = 0. We expect from Figure [2| as well as common experience, that the
coefficient on X should be positivel]

Before fitting the logistic regression, it’s convenient to re-shape the data:

11 Jearned of this data set from Peter Guttorp’s Stochastic Modeling of Scientific Data; the
data file is available from http://www.stat.washington.edu/peter/stoch.mod.data.html.

2This does not attempt to model how much precipitation there will be tomorrow, if there
is any. We could make that a separate model, if we can get this part right.


http://www.stat.washington.edu/peter/stoch.mod.data.html
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plot(hist (snoqualmie,n=50,probability=TRUE) ,xlab="Precipitation (1/100 inch)")
rug(snoqualmie,col="grey")

Figure 1: Histogram of the amount of daily precipitation at Snoqualmie Falls
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plot(snoqualmie[-length(snoqualmie)],snoqualmie[-1],
xlab="Precipitation today (1/100 inch)",
ylab="Precipitation tomorrow (1/100 inch)",cex=0.1)
rug(snoqualmie[-length(snoqualmie)],side=1,col="grey")
rug(snoqualmie[-1] ,side=2,col="grey")

Figure 2: Scatterplot showing relationship between amount of precipitation on
successive days. Notice that days of no precipitation can follow days of any
amount of precipitation, but seem to be more common when there is little or
no precipitation to start with.



vector.to.pairs <- function(v) {

v <- as.numeric(v)

n <- length(v)

return(cbind(v[-1],v[-n]))
}
snoq.pairs <- vector.to.pairs(snoqualmie)
colnames(snoq.pairs) <- c("tomorrow","today")
snoq <- as.data.frame(snoq.pairs)

This creates a two-column array, where the first column is the precipitation on
day i+ 1, and the second column is the precipitation on day 4 (hence the column
names). Finally, I turn the whole thing into a data frame.

Now fitting is straightforward:

snoq.logistic <- glm((tomorrow > 0) ~ today, data=snoq, family=binomial)
To see what came from the fitting, run summary:

> summary (snoq.logistic)

Call:
glm(formula = (tomorrow > 0) ~ today, family = binomial, data = snoq)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.3713 -1.1805 0.9536 1.1693 1.1744

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 0.0071899 0.0198430 0.362 0.717
today 0.0059232 0.0005858 10.111 <2e-16 **x*

(I have cut off some uninformative bits of the output.) The coefficient on X,
the amount of precipitation today, is indeed positive, and (if we can trust R’s
calculations) highly significant. There is also an intercept term, which is slight
positive, but not very significant. We can see what the intercept term means
by considering what happens when X = 0, i.e., on days of no precipitation.
The linear predictor is then 0.0072 + 0 * (0.0059) = 0.0072, and the predicted
probability of precipitation is %0072 /(1 + €%9072) = (.502. That is, even when
there is no precipitation today, we predict that it is slightly more probable than
not that there will be some precipitation tomorrowﬂ

We can get a more global view of what the model is doing by plotting the
data and the predictions (Figure . This shows a steady increase in the prob-
ability of precipitation tomorrow as the precipitation today increases, though
with the leveling off characteristic of logistic regression. The (approximate)

3For western Washington State, this is plausible — but see below.



95% confidence limits for the predicted probability are (on close inspection)
asymmetric, and actually slightly narrower at the far right than at intermediate
values of X (Figure ).

How well does this work? We can get a first sense of this by comparing
it to a simple nonparametric smoothing of the data. Remembering that when
Y is binary, PrY = 1|X =2 = E[Y|X = z], we can use a smoothing spline to
estimate E [Y|X = z] (Figure [5). This would not be so great as a model — it
ignores the fact that the response is a binary event and we’re trying to estimate
a probability, the fact that the variance of Y therefore depends on its mean, etc.
— but it’s at least indicative.

The result is in not-terribly-bad agreement with the logistic regression up to
about 1.2 or 1.3 inches of precipitation, after which it runs significantly below
the logistic regression, rejoins it around 3.5 inches of precipitation, and then (as
it were) falls off a cliff.

We can do better by fitting a generalized additive model. In this case,
with only one predictor variable, this means using non-parametric smoothing to
estimate the log odds — we’re still using the logistic transformation, but only
requiring that the log odds change smoothly with X, not that they be linear in
X. The result (Figure @ is actually quite similar to the spline, but a bit better
behaved, and has confidence intervals. At the largest values of X, the latter
span nearly the whole range from 0 to 1, which is not unreasonable considering
the sheer lack of data there.

Visually, the logistic regression curve is usually but not always within the
confidence limits of the non-parametric predictor. What can we say about the
difference between the two models more quantiatively?

Numerically, the deviance is 18079.69 for the logistic regression, and 18036.77
for the GAM. We can go through the testing procedure outlined in the notes
for lecture 14. We need a simulator (which presumes that the logistic regression
model is true), and we need to calculate the difference in deviance on simulated
data many times.

# Simulate from the fitted logistic regression model for Snoqualmie
# Presumes: fitted values of the model are probabilities.
snoq.sim <- function(model=snoq.logistic) {
fitted.probs <- fitted(model)
n <- length(fitted.probs)
new.binary <- rbinom(n,size=1,prob=fitted.probs)
return(new.binary)

3

A quick check of the simulator against the observed values:

> summary(ifelse(snoql[,1]>0,1,0))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0000 1.0000 0.5262 1.0000 1.0000
> summary (snoq.sim())

Min. 1st Qu. Median Mean 3rd Qu. Max.
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plot ((tomorrow>0) “today,data=snoq,xlab="Precipitation today (1/100 inch)",
ylab="Positive precipitation tomorrow?")
rug(snog$today,side=1,col="grey")

data.plot <- data.frame(today=(0:500))

logistic.predictions <- predict(snoq.logistic,newdata=data.plot,se.fit=TRUE)

lines(0:500,ilogit(logistic.predictions$fit))

lines(0:500,ilogit(logistic.predictions$fit+1.96xlogistic.predictions$se.fit),
1ty=2)

lines(0:500,ilogit (logistic.predictions$fit-1.96%logistic.predictions$se.fit),
1ty=2)

Figure 3: Data (dots), plus predicted probabilities (solid line) and approximate
95% confidence intervals from the logistic regression model (dashed lines). Note
that calculating standard errors for predictions on the logit scale, and then
transforming, is better practice than getting standard errors directly on the
probability scale.



Difference in probability between prediction
and confidence limit for prediction
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plot(0:500,ilogit(logistic.predictions$fit)
-ilogit(logistic.predictions$fit-1.96%logistic.predictions$se.fit),

type="1",col="blue",xlab="Precipitation today (1/100 inch)",
main="Difference in probability between prediction\n

and confidence limit for prediction",
ylab = expression(paste(Delta,"probability")))

lines(0:500,ilogit (logistic.predictions$fit+1.96%logistic.predictions$se.fit)

-ilogit(logistic.predictions$fit))

Figure 4: Distance from the fitted probability to the upper (black) and lower
(blue) confidence limits. Notice that the two are not equal, and somewhat
smaller at very large values of X than at intermediate ones. (Why?)
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snoq.spline <- smooth.spline(x=snoq$today,y=(snogq$tomorrow>0))
lines(snoq.spline,col="red")

Figure 5: As Figure 3| plus a smoothing spline (red).



S
Q- a
3
9 o
& o ]
1S
ic}
c © _]
e o
s
=
=
g oS 7|
a
o
= N
5 ©
o
o

o

O‘ - AR,

1 T T T T
0 100 200 300 400
Precipitation today (1/100 inch)

library (mgcv)

snoq.gam <- gam((tomorrow>0) “s(today),data=snoq,family=binomial)

gam.predictions <- predict.gam(snoq.gam,newdata=data.plot,se.fit=TRUE)

lines(0:500,ilogit(gam.predictions$fit),col="blue")

lines(0:500,ilogit (gam.predictions$fit+1l.96*gam.predictions$se.fit),
col="blue",lty=2)

lines(0:500,ilogit(gam.predictions$fit-1.96*gam.predictions$se.fit),
col="blue",lty=2)

Figure 6: As Figure 5] but with the addition of a generalized additive model
(blue line) and its confidence limits (dashed blue lines). Note: the predict
function in the gam package does not allow one to calculate standard er-
rors for new data. You may need to un-load the gam library first, with
detach(package:gam).



0.0000 0.0000 1.0000 0.5264 1.0000 1.0000

This suggests that the simulator is not acting crazily.
Now for the difference in deviances:

# Simulate from fitted logistic regression, re-fit logistic regression and
# GAM, calculate difference in deviances
diff.dev <- function(model=snoq.logistic,x=snoql[,2]) {
y.new <- snoq.sim(model)
GLM.dev <- glm(y.new ~ x,family=binomial)$deviance
GAM.dev <- gam(y.new ~ s(x),family=binomial)$deviance
return(GLM.dev-GAM.dev)
¥

A single run of this takes about 1.5 seconds on my computer.

Finally, we calculate the distribution of difference in deviances under the
null (that the logistic regression is properly specified), and the corresponding
p-value:

diff.dev.obs <- snoq.logistic$deviance - snoq.gam$deviance
null.dist.of.diff.dev <- replicate(1000,diff.dev())
p.value <- (1+sum(null.dist.of.diff.dev > diff.dev.obs))/(1+length(null.dist.of.diff.dev))

Using a thousand replicates takes about 1500 seconds, or roughly 25 minutes,
which is substantial, but not impossible; it gave a p-value of < 1073, and the
following sampling distribution:

> summary(null.dist.of.diff.dev)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000097 0.002890 0.016770 2.267000 2.897000 29.750000

(A preliminary trial run of only 100 replicates, taking a few minutes, gave

> summary(null.dist.of.diff.dev)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000291 0.002681 0.013700 2.008000 2.121000 27.820000

which implies a p-value of < 0.01. This would be good enough for many practical
purposes.)

Having detected that there is a problem with the GLM, we can ask where
it lies. We could just use the GAM, but it’s more interesting to try to diagnose
what’s going on.

In this respect Figure[f]is actually a little misleading, because it leads the eye
to emphasize the disagreement between the models at large X, when actually
there are very few data points there, and so even large differences in predicted
probabilities there contribute little to the over-all likelihood difference. What
is actually more important is what happens at X = 0, which contains a very
large number of observations (about 47% of all observations), and which we
have reason to think is a special value anyway.

10



Let’s try introducing a dummy variable for X = 0 into the logistic regression,
and see what happens. It will be convenient to augment the data frame with
an extra column, recording 1 whenever X = 0 and 0 otherwise.

snoq2 <- data.frame(snoq,dry=ifelse(snogq$today==0,1,0))
snoq2.logistic <- glm((tomorrow > 0) ~ today + dry,data=snoq2,family=binomial)
snoqg2.gam <- gam((tomorrow > 0) ~ s(today) + dry,data=snoq2,family=binomial)

Notice that I allow the GAM to treat zero as a special value as well, by giving
it access to that dummy variable. In principle, with enough data it can decide
whether or not that is useful on its own, but since we have guessed that it is, we
might as well include it. Figure[7]shows the data and the two new models. These
are extremely close to each other. The new GLM has a deviance of 18015.65,
lower than even the GAM before, and the new GAM has a deviance of 18015.21.
The p-value is essentially 1 — and yet we know that the test, with this test,
does have power to detect departures from the parametric model. This is very
promising.
Let’s turn now to looking at calibration. The actual fraction of no-precipitation

days which are followed by precipitation is

> mean(snoq$tomorrow[snoq$today==0]>0)
[1] 0.4702199

What does the new logistic model predict?

> predict(snog2.logistic,newdata=data.frame(today=0,dry=1),type="response")
1
0.4702199

This should not be surprising — we’ve given the model a special parameter
dedicated to getting this one probability exactly right! The hope however is
that this will change the predictions made on days with precipitation so that
they are better.

We'll tackle this through calibration. Looking at a histogram of fitted values
(hist(fitted(snog2.logistic))) shows a gap in the distribution of predicted
probabilities between 0.47 and about 0.55, so we’ll look first at days where the
predicted probability is between 0.55 and 0.56.

> mean(snoq$tomorrow[(fitted(snog2.logistic) >= 0.55)
& (fitted(snoq2.logistic) < 0.56)] > 0)
[1] 0.5474882

Not bad — but a bit painful to write out. Let’s write a function.

frequency.vs.probability <- function(p.lower,p.upper=p.lower+0.01,
model=snoqg2.logistic,
data=(snoq$tomorrow>0)) {
fitted.probs <- fitted(model)
indices <- (fitted.probs >= p.lower) & (fitted.probs < p.upper)

11
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plot ((tomorrow>0) “today,data=snoq,xlab="Precipitation today (1/100 inch)",
ylab="Positive precipitation tomorrow?")
rug(snog$today,side=1,col="grey")

data.plot=data.frame(data.plot,dry=ifelse(data.plot$today==0,1,0))

logistic.predictions2 <- predict(snog2.logistic,newdata=data.plot,se.fit=TRUE)

lines(0:500,ilogit(logistic.predictions2$fit))

lines(0:500,ilogit(logistic.predictions2$fit+1.96*logistic.predictions2$se.fit),
1ty=2)

lines(0:500,ilogit(logistic.predictions2$fit-1.96*logistic.predictions2$se.fit),
1ty=2)

gam.predictions2 <- predict.gam(snoq2.gam,newdata=data.plot,se.fit=TRUE)

lines(0:500,ilogit(gam.predictions2$fit),col="blue")

lines(0:500,ilogit(gam.predictions2$fit+1.96*gam.predictions2$se.fit),
col="blue",1lty=2)

lines(0:500,ilogit (gam.predictions2$fit-1.96%gam.predictions2$se.fit),
col="blue",lty=2)

Figure 7: As Figure [6] but allowing the two models to use a dummy variable
indicating when today is completely dry (X = 0).

12



ave.prob <- mean(fitted.probs[indices])

frequency <- mean(datalindices])

se <- sqrt(ave.prob*(1l-ave.prob)/sum(indices))

out <- list(frequency=frequency,ave.prob=ave.prob,se=se)
return(out)

}

I have added a calculation of the average predicted probability, and a crude
estimate of the standard error we should expect if the observations really are
binomial with the predicted probabilitiesﬂ Try the function out before doing
anything rash:

> frequency.vs.probability(0.55)
$frequency
[1] 0.5474882

$ave.prob
[1] 0.5548081

$se
[1] 0.00984567

This agrees with our previous calculation.
Now we can do this for a lot of probability brackets:

f.vs.p <- sapply((55:74)/100,frequency.vs.probability)
This comes with some unfortunate R cruft, removable thus

f.vs.p <- data.frame(frequency=unlist(f.vs.p["frequency",]),
ave.prob=unlist(f.vs.p["ave.prob",]),
se=unlist(f.vs.p["se",]1))

and we're ready to plot (Figure . The observed frequencies are generally quite
near to the predicted probabilites, especially when the number of observations
is large and so the sample frequency should be close to the true probability.
While I wouldn’t want to say this was the last word in weather forecastinﬂ it’s
surprisingly good for such a simple model.

4This could be improved by averaging predicted variances for each point, but using prob-
ability ranges of 0.01 makes it hardly worth the effort.

5There is an extensive discussion of this data in chapter 2 of Guttorp’s book, including
many significant refinements, such as dependence across multiple days.
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plot(f.vs.p$ave.prob,f.vs.p$frequency,xlim=c(0,1),ylim=c(0,1),
xlab="Predicted probabilities",ylab="Observed frequencies")
rug(fitted(snoqg2.logistic),col="grey")
abline(0,1,col="grey")
segments (x0=f .vs.p$ave.prob,y0=£f.vs.p$ave.prob-1.96*f.vs.p$se,
y1=f.vs.p$ave.prob+1.96x*f.vs.p$se)

Figure 8: Calibration plot for the modified logistic regression model
snoqg2.logistic. Points show the actual frequency of precipitation for each
level of predicted probability. Vertical lines are (approximate) 95% sampling
intervals for the frequency, given the predicted probability and the number of
observations.
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