
19. Mixture Models, Latent Variables and the

EM Algorithm

36-402, Advanced Data Analysis

31 March 2011

Contents

1 Two Routes to Mixture Models 1
1.1 From Factor Analysis to Mixture Models 1
1.2 From Kernel Density Estimates to Mixture Models 2
1.3 Mixture Models . 2
1.4 Geometry . 3
1.5 Identifiability . 4
1.6 Probabilistic Clustering . 5

2 Estimating Parametric Mixture Models 5
2.1 More about the EM Algorithm 7
2.2 Further Reading on and Applications of EM 10
2.3 Topic Models and Probabilistic LSA 10

3 Non-parametric Mixture Modeling 11

4 R 11

5 Exercises 11

1 Two Routes to Mixture Models

1.1 From Factor Analysis to Mixture Models

In factor analysis, the origin myth is that we have a fairly small number, q of
real variables which happen to be unobserved (“latent”), and the much larger
number p of variables we do observe arise as linear combinations of these factors,
plus noise. The mythology is that it’s possible for us (or for Someone) to
continuously adjust the latent variables, and the distribution of observables
likewise changes continuously. What if the latent variables are not continuous
but ordinal, or even categorical? The natural idea would be that each value of
the latent variable would give a different distribution of the observables.

1

1.2 From Kernel Density Estimates to Mixture Models

We have also previously looked at kernel density estimation, where we approxi-
mate the true distribution by sticking a small (1

n weight) copy of a kernel pdf at
each observed data point and adding them up. With enough data, this comes
arbitrarily close to any (reasonable) probability density, but it does have some
drawbacks. Statistically, it labors under the curse of dimensionality. Compu-
tationally, we have to remember all of the data points, which is a lot. We saw
similar problems when we looked at fully non-parametric regression, and then
saw that both could be ameliorated by using things like additive models, which
impose more constraints than, say, unrestricted kernel smoothing. Can we do
something like that with density estimation?

Additive modeling for densities is not as common as it is for regression —
it’s harder to think of times when it would be natural and well-defined1 — but
we can do things to restrict density estimation. For instance, instead of putting
a copy of the kernel at every point, we might pick a small number K � n of
points, which we feel are somehow typical or representative of the data, and
put a copy of the kernel at each one (with weight 1

K). This uses less memory,
but it ignores the other data points, and lots of them are probably very similar
to those points we’re taking as prototypes. The differences between prototypes
and many of their neighbors are just matters of chance or noise. Rather than
remembering all of those noisy details, why not collapse those data points, and
just remember their common distribution? Different regions of the data space
will have different shared distributions, but we can just combine them.

1.3 Mixture Models

More formally, we say that a distribution f is a mixture of K component
distributions f1, f2, . . . fK if

f(x) =
K∑
k=1

λkfk(x) (1)

with the λk being the mixing weights, λk > 0,
∑
k λk = 1. Eq. 1 is a complete

stochastic model, so it gives us a recipe for generating new data points: first
pick a distribution, with probabilities given by the mixing weights, and then
generate one observation according to that distribution. Symbolically,

Z ∼ Mult(λ1, λ2, . . . λK) (2)
X|Z ∼ fZ (3)

where I’ve introduced the discrete random variable Z which says which compo-
nent X is drawn from.

1Remember that the integral of a probability density over all space must be 1, while the
integral of a regression function doesn’t have to be anything in particular. If we had an
additive density, f(x) =

P
j fj(xj), ensuring normalization is going to be very tricky; we’d

need
P

j

R
fj(xj)dx1dx2dxp = 1. It would be easier to ensure normalization while making

the log-density additive, but that assumes the features are independent of each other.

2

I haven’t said what kind of distribution the fks are. In principle, we could
make these completely arbitrary, and we’d still have a perfectly good mixture
model. In practice, a lot of effort is given over to parametric mixture mod-
els, where the fk are all from the same parametric family, but with different
parameters — for instance they might all be Gaussians with different centers
and variances, or all Poisson distributions with different means, or all power
laws with different exponents. (It’s not strictly necessary that they all be of
the same kind.) We’ll write the parameter, or parameter vector, of the kth

component as θk, so the model becomes

f(x) =
K∑
k=1

λkf(x; θk) (4)

The over-all parameter vector of the mixture model is thus θ = (λ1, λ2, . . . λK , θ1, θ2, . . . θK).
Let’s consider two extremes. When K = 1, we have a simple parametric

distribution, of the usual sort, and density estimation reduces to estimating the
parameters, by maximum likelihood or whatever else we feel like. On the other
hand when K = n, the number of observations, we have gone back towards
kernel density estimation. If K is fixed as n grows, we still have a parametric
model, and avoid the curse of dimensionality, but a mixture of (say) ten Gaus-
sians is more flexible than a single Gaussian — thought it may still be the case
that the true distribution just can’t be written as a ten-Gaussian mixture. So
we have our usual bias-variance or accuracy-precision trade-off — using many
components in the mixture lets us fit many distributions very accurately, with
low approximation error or bias, but means we have more parameters and so we
can’t fit any one of them as precisely, and there’s more variance in our estimates.

1.4 Geometry

Two lectures ago, we looked at principal components analysis, which finds lin-
ear structures with q space (lines, planes, hyper-planes, . . .) which are good
approximations to our p-dimensional data, q � p. In the last lecture, we looked
at factor analysis, where which imposes a statistical model for the distribution
of the data around this q-dimensional plane (Gaussian noise), and a statistical
model of the distribution of representative points on the plane (also Gaussian).
This set-up is implied by the mythology of linear continuous latent variables,
but can arise in other ways.

Now, we know from geometry that it takes q + 1 points to define a q-
dimensional plane, and that in general any q+1 points on the plane will do. This
means that if we use a mixture model with q + 1 components, we will also get
data which clusters around a q-dimensional plane. Furthermore, by adjusting
the mean of each component, and their relative weights, we can make the global
mean of the mixture whatever we like. And we can even match the covariance
matrix of any q-factor model by using a mixture with q+ 1 components2. Now,

2See Bartholomew (1987, pp. 36–38). The proof is tedious algebraically.

3

this mixture distribution will hardly ever be exactly the same as the factor
model’s distribution — mixtures of Gaussians aren’t Gaussian, the mixture will
usually (but not always) be multimodal while the factor distribution is always
unimodal — but it will have the same geometry, the same mean and the same
covariances, so we will have to look beyond those to tell them apart. Which,
frankly, people hardly ever do.

1.5 Identifiability

Before we set about trying to estimate our probability models, we need to make
sure that they are identifiable — that if we have distinct representations of the
model, they make distinct observational claims. It is easy to let there be too
many parameters, or the wrong choice of parameters, and lose identifiability.
If there are distinct representations which are observationally equivalent, we
either need to change our model, change our representation, or fix on a unique
representation by some convention.

• With additive regression, E [Y |X = x] = α+
∑
j fj(xj), we can add arbi-

trary constants so long as they cancel out. That is, we get the same pre-
dictions from α+ c0 +

∑
jfj(xj) + cj when c0 = −

∑
j cj . This is another

model of the same form, α′ +
∑
j f
′
j(xj), so it’s not identifiable. We dealt

with this by imposing the convention that α = E [Y] and E [fj(Xj)] = 0
— we picked out a favorite, convenient representation from the infinite
collection of equivalent representations.

• Linear regression becomes unidentifiable with collinear features. Collinear-
ity is a good reason to not use linear regression (i.e., we change the model.)

• Factor analysis is unidentifiable because of the rotation problem. Some
people respond by trying to fix on a particular representation, others just
ignore it.

Two kinds of identification problems are common for mixture models; one is
trivial and the other is fundamental. The trivial one is that we can always swap
the labels of any two components with no effect on anything observable at all
— if we decide that component number 1 is now component number 7 and vice
versa, that doesn’t change the distribution of X at all. This label degeneracy
can be annoying, especially for some estimation algorithms, but that’s the worst
of it.

A more fundamental lack of identifiability happens when mixing two distri-
butions from a parametric family just gives us a third distribution from the same
family. For example, suppose we have a single binary feature, say an indicator
for whether someone will pay back a credit card. We might think there are two
kinds of customers, with high- and low- risk of not paying, and try to represent
this as a mixture of binomial distribution. If we try this, we’ll see that we’ve
gotten a single binomial distribution with an intermediate risk of repayment.
A mixture of binomials is always just another binomial. In fact, a mixture of
multinomials is always just another multinomial.

4

1.6 Probabilistic Clustering

Yet another way to view mixture models, which I hinted at when I talked about
how they are a way of putting similar data points together into “clusters”, where
clusters are represented by, precisely, the component distributions. The idea is
that all data points of the same type, belonging to the same cluster, are more
or less equivalent and all come from the same distribution, and any differences
between them are matters of chance. This view exactly corresponds to mixture
models like Eq. 1; the hidden variable Z I introduced above in just the cluster
label.

One of the very nice things about probabilistic clustering is that Eq. 1 ac-
tually claims something about what the data looks like; it says that it follows a
certain distribution. We can check whether it does, and we can check whether
new data follows this distribution. If it does, great; if not, if the predictions sys-
tematically fail, then the model is wrong. We can compare different probabilistic
clusterings by how well they predict (say under cross-validation).3

In particular, probabilistic clustering gives us a sensible way of answering the
question “how many clusters?” The best number of clusters to use is the number
which will best generalize to future data. If we don’t want to wait around to get
new data, we can approximate generalization performance by cross-validation,
or by any other adaptive model selection procedure.

2 Estimating Parametric Mixture Models

From intro stats., we remember that it’s generally a good idea to estimate
distributions using maximum likelihood, when we can. How could we do that
here?

Remember that the likelihood is the probability (or probability density) of
observing our data, as a function of the parameters. Assuming independent
samples, that would be

n∏
i=1

f(xi; θ) (5)

for observations x1, x2, . . . xn. As always, we’ll use the logarithm to turn multi-
plication into addition:

`(θ) =
n∑
i=1

log f(xi; θ) (6)

=
n∑
i=1

log
K∑
k=1

λkf(xi; θk) (7)

3Contrast this with k-means or hierarchical clustering, which you may have seen in other
classes: they make no predictions, and so we have no way of telling if they are right or wrong.
Consequently, comparing different non-probabilistic clusterings is a lot harder!

5

Let’s try taking the derivative of this with respect to one parameter, say θj .

∂`

∂θj
=

n∑
i=1

1∑K
k=1 λkf(xi; θk)

λj
∂f(xi; θj)

∂θj
(8)

=
n∑
i=1

λjf(xi; θj)∑K
k=1 λkf(xi; θk)

1
f(xi; θj)

∂f(xi; θj)
∂θj

(9)

=
n∑
i=1

λjf(xi; θj)∑K
k=1 λkf(xi; θk)

∂ log f(xi; θj)
∂θj

(10)

If we just had an ordinary parametric model, on the other hand, the derivative
of the log-likelihood would be

n∑
i=1

∂ log f(xi; θj)
∂θj

(11)

So maximizing the likelihood for a mixture model is like doing a weighted like-
lihood maximization, where the weight of xi depends on cluster, being

wij =
λjf(xi; θj)∑K
k=1 λkf(xi; θk)

(12)

The problem is that these weights depend on the parameters we are trying to
estimate!

Let’s look at these weights wij a bit more. Remember that λj is the proba-
bility that the hidden class variable Z is j, so the numerator in the weights is the
joint probability of getting Z = j and X = xi. The denominator is the marginal
probability of getting X = xi, so the ratio is the conditional probability of Z = j
given X = xi,

wij =
λjf(xi; θj)∑K
k=1 λkf(xi; θk)

= p(Z = j|X = xi; θ) (13)

If we try to estimate the mixture model, then, we’re doing weighted maximum
likelihood, with weights given by the posterior cluster probabilities. These, to
repeat, depend on the parameters we are trying to estimate, so there seems to
be a vicious circle.

But, as the saying goes, one man’s vicious circle is another man’s successive
approximation procedure. A crude way of doing this4 would start with an initial
guess about the component distributions; find out which component each point
is most likely to have come from; re-estimate the components using only the
points assigned to it, etc., until things converge. This corresponds to taking
all the weights wij to be either 0 or 1. However, it does not maximize the
likelihood, since we’ve seen that to do so we need fractional weights.

What’s called the EM algorithm is simply the obvious refinement of this
“hard” assignment strategy.

4Related to what’s called “k-means” clustering.

6

1. Start with guesses about the mixture components θ1, θ2, . . . θK and the
mixing weights λ1, . . . λK .

2. Until nothing changes very much:

(a) Using the current parameter guesses, calculate the weights wij (E-
step)

(b) Using the current weights, maximize the weighted likelihood to get
new parameter estimates (M-step)

3. Return the final parameter estimates (including mixing proportions) and
cluster probabilities

The M in “M-step” and “EM” stands for “maximization”, which is pretty
transparent. The E stands for “expectation”, because it gives us the condi-
tional probabilities of different values of Z, and probabilities are expectations
of indicator functions. (In fact in some early applications, Z was binary, so one
really was computing the expectation of Z.) The whole thing is also called the
“expectation-maximization” algorithm.

2.1 More about the EM Algorithm

The EM algorithm turns out to be a general way of maximizing the likelihood
when some variables are unobserved, and hence useful for other things besides
mixture models. So in this section, where I try to explain why it works, I
am going to be a bit more general abstract. (Also, it will actually cut down
on notation.) I’ll pack the whole sequence of observations x1, x2, . . . xn into a
single variable d (for “data”), and likewise the whole sequence of z1, z2, . . . zn
into h (for “hidden”). What we want to do is maximize

`(θ) = log p(d; θ) = log
∑
h

p(d, h; θ) (14)

This is generally hard, because even if p(d, h; θ) has a nice parametric form, that
is lost when we sum up over all possible values of h (as we saw above). The
essential trick of the EM algorithm is to maximize not the log likelihood, but
a lower bound on the log-likelihood, which is more tractable; we’ll see that this
lower bound is sometimes tight, i.e., coincides with the actual log-likelihood,
and in particular does so at the global optimum.

7

0.5 1.0 1.5 2.0

-0
.5

0.
0

0.
5

x

lo
g(
x)

curve(log(x),from=0.4,to=2.1)
segments(0.5,log(0.5),2,log(2),lty=2)

Figure 1: The logarithm is a concave function, i.e., the curve connecting any
two points lies above the straight line doing so. Thus the average of logarithms
is less than the logarithm of the average.

We can introduce an arbitrary5 distribution on h, call it q(h), and we’ll

`(θ) = log
∑
h

p(d, h; θ) (15)

= log
∑
h

q(h)
q(h)

p(d, h; θ) (16)

= log
∑
h

q(h)
p(d, h; θ)
q(h)

(17)

So far so trivial.
Now we need a geometric fact about the logarithm function, which is that

its curve is concave: if we take any two points on the curve and connect them
by a straight line, the curve lies above the line (Figure 1). Algebraically, this
means that

w log t1 + (1− w) log t2 ≤ logwt1 + (1− w)t2 (18)

for any 0 ≤ w ≤ 1, and any points t1, t2 > 0. Nor does this just hold for two
points: for any r points t1, t2, . . . tr > 0, and any set of non-negative weights

5Well, almost arbitrary; it shouldn’t give probability zero to value of h which has positive
probability for all θ.

8

∑r
i=1 wr = 1,

r∑
i=1

wi log ti ≤ log
r∑
i=1

witi (19)

In words: the log of the average is at least the average of the logs. This is called
Jensen’s inequality. So

log
∑
h

q(h)
p(d, h; θ)
q(h)

≥
∑
h

q(h) log
p(d, h; θ)
q(h)

(20)

≡ J(q, θ) (21)

We are bothering with this because we hope that it will be easier to maximize
this lower bound on the likelihood than the actual likelihood, and the lower
bound is reasonably tight. As to tightness, suppose that q(h) = p(h|d; θ). Then

p(d, h; θ)
q(h)

=
p(d, h; θ)
p(h|d; θ)

=
p(d, h; θ)

p(h, d; θ)/p(d; θ)
= p(d; θ) (22)

no matter what h is. So with that choice of q, J(q, θ) = `(θ) and the lower
bound is tight. Also, since J(q, θ) ≤ `(θ), this choice of q maximizes J for fixed
θ.

Here’s how the EM algorithm goes in this formulation.

1. Start with an initial guess θ(0) about the components and mixing weights.

2. Until nothing changes very much

(a) E-step: q(t) = argmaxq J(q, θ(t))

(b) M-step: θ(t+1) = argmaxθ J(q(t), θ)

3. Return final estimates of θ and q

The E and M steps are now nice and symmetric; both are about maximizing J .
It’s easy to see that, after the E step,

J(q(t), θ(t)) ≥ J(q(t−1), θ(t)) (23)

and that, after the M step,

J(q(t), θ(t+1)) ≥ J(q(t), θ(t)) (24)

Putting these two inequalities together,

J(q(t+1), θ(t+1)) ≥ J(q(t), θ(t)) (25)
`(θ(t+1)) ≥ `(θ(t)) (26)

So each EM iteration can only improve the likelihood, guaranteeing convergence
to a local maximum. Since it only guarantees a local maximum, it’s a good idea
to try a few different initial values of θ(0) and take the best.

9

We saw above that the maximization in the E step is just computing the
posterior probability p(h|d; θ). What about the maximization in the M step?∑

h

q(h) log
p(d, h; θ)
q(h)

=
∑
h

q(h) log p(d, h; θ)−
∑
h

q(h) log q(h) (27)

The second sum doesn’t depend on θ at all, so it’s irrelevant for maximizing,
giving us back the optimization problem from the last section. This confirms
that using the lower bound from Jensen’s inequality hasn’t yielded a different
algorithm!

2.2 Further Reading on and Applications of EM

My presentation of the EM algorithm draws heavily on Neal and Hinton (1998).
Because it’s so general, the EM algorithm is applied to lots of problems

with missing data or latent variables. Traditional estimation methods for factor
analysis, for example, can be replaced with EM. (Arguably, some of the older
methods were versions of EM.) A common problem in time-series analysis and
signal processing is that of “filtering” or “state estimation”: there’s an unknown
signal St, which we want to know, but all we get to observe is some noisy,
corrupted measurement, Xt = h(St) + ηt. (A historically important example of
a “state” to be estimated from noisy measurements is “Where is our rocket and
which way is it headed?” — see McGee and Schmidt, 1985.) This is solved by
the EM algorithm, with the signal as the hidden variable; Fraser (2008) gives a
really good introduction to such models and how they use EM.

Instead of just doing mixtures of densities, one can also do mixtures of
predictive models, say mixtures of regressions, or mixtures of classifiers. The
hidden variable Z here controls which regression function to use. A general form
of this is what’s known as a mixture-of-experts model (Jordan and Jacobs,
1994; Jacobs, 1997) — each predictive model is an “expert”, and there can be a
quite complicated set of hidden variables determining which expert to use when.

The EM algorithm is so useful and general that it has in fact been re-invented
multiple times. The name “EM algorithm” comes from the statistics of mixture
models in the late 1970s; in the time series literature it’s been known since the
1960s as the “Baum-Welch” algorithm.

2.3 Topic Models and Probabilistic LSA

Mixture models over words provide an alternative to latent semantic indexing
for document analysis. Instead of finding the principal components of the bag-
of-words vectors, the idea is as follows. There are a certain number of topics
which documents in the corpus can be about; each topic corresponds to a dis-
tribution over words. The distribution of words in a document is a mixture of
the topic distributions. That is, one can generate a bag of words by first picking
a topic according to a multinomial distribution (topic i occurs with probability
λi), and then picking a word from that topic’s distribution. The distribution of

10

topics varies from document to document, and this is what’s used, rather than
projections on to the principal components, to summarize the document. This
idea was, so far as I can tell, introduced by Hofmann (1999), who estimated ev-
erything by EM. Latent Dirichlet allocation, due to Blei and collaborators
(Blei et al., 2003) is an important variation which smoothes the topic distribu-
tions; there is a CRAN package called lda. Blei and Lafferty (2009) is a good
recent review paper of the area.

3 Non-parametric Mixture Modeling

We could replace the M step of EM by some other way of estimating the dis-
tribution of each mixture component. This could be a fast-but-crude estimate
of parameters (say a method-of-moments estimator if that’s simpler than the
MLE), or it could even be a non-parametric density estimator of the type we
talked about last time. (Similarly for mixtures of regressions, etc.) Issues of
dimensionality re-surface now, as well as convergence: because we’re not, in
general, increasing J at each step, it’s harder to be sure that the algorithm will
in fact converge. This is an active area of research.

4 R

There are several R packages which implement mixture models. The mclust
package (http://www.stat.washington.edu/mclust/) is pretty much stan-
dard for Gaussian mixtures. One of the most recent and powerful is mixtools
(Benaglia et al., 2009), which, in addition to classic mixtures of parametric
densities, handles mixtures of regressions and some kinds of non-parametric
mixtures. The FlexMix package (Leisch, 2004) is (as the name implies) very
good at flexibly handling complicated situations, though you have to do some
programming to take advantage of this.

5 Exercises

Not to hand in.

1. Work through the E- step and M- step for a mixture of two Poisson dis-
tributions.

2. Code up the EM algorithm for a mixture of K Gaussians. Simulate data
from K = 3 Gaussians. How well does your code assign data-points to
components if you give it the actual Gaussian parameters as your initial
guess? If you give it other initial parameters?

11

http://www.stat.washington.edu/mclust/

References

Bartholomew, David J. (1987). Latent Variable Models and Factor Analysis.
New York: Oxford University Press.

Benaglia, Tatiana, Didier Chauveau, David R. Hunter and Derek S. Young
(2009). “mixtools: An R Package for Analyzing Mixture Models.” Journal of
Statistical Software, 32. URL http://www.jstatsoft.org/v32/i06.

Blei, David M. and John D. Lafferty (2009). “Topic Models.” In Text Min-
ing: Theory and Applications (A. Srivastava and M. Sahami, eds.). London:
Taylor and Francis. URL http://www.cs.princeton.edu/~blei/papers/
BleiLafferty2009.pdf.

Blei, David M., Andrew Y. Ng and Michael I. Jordan (2003). “Latent Dirichlet
Allocation.” Journal of Machine Learning Research, 3: 993–1022. URL
http://jmlr.csail.mit.edu/papers/v3/blei03a.html.

Fraser, Andrew M. (2008). Hidden Markov Models and Dynamical Systems.
Philadelphia: SIAM Press. URL http://www.siam.org/books/ot107/.

Hofmann, Thomas (1999). “Probabilistic Latent Semantic Analysis.” In Un-
certainty in Artificial Intelligence: Proceedings of the Fiftheenth Conference
[UAI 1999] (Kathryn Laskey and Henri Prade, eds.), pp. 289–296. San Fran-
cisco: Morgan Kaufmann. URL http://www.cs.brown.edu/~th/papers/
Hofmann-UAI99.pdf.

Jacobs, Robert A. (1997). “Bias/Variance Analyses of Mixtures-of-Experts Ar-
chitectures.” Neural Computation, 9: 369–383.

Jordan, Michael I. and Robert A. Jacobs (1994). “Hierarchical Mixtures of
Experts and the EM Algorithm.” Neural Computation, 6: 181–214.

Leisch, Friedrich (2004). “FlexMix: A General Framework for Finite Mixture
Models and Latent Class Regression in R.” Journal of Statistical Software,
11. URL http://www.jstatsoft.org/v11/i08.

McGee, Leonard A. and Stanley F. Schmidt (1985). Discovery of the Kalman
Filter as a Practical Tool for Aerospace and Industry . Tech. Rep. 86847,
NASA Technical Memorandum. URL http://ntrs.nasa.gov/archive/
nasa/casi.ntrs.nasa.gov/19860003843_1986003843.pdf.

Neal, Radford M. and Geoffrey E. Hinton (1998). “A View of the EM
Algorithm that Justifies Incremental, Sparse, and Other Variants.” In
Learning in Graphical Models (Michael I. Jordan, ed.), pp. 355–368. Dor-
drecht: Kluwer Academic. URL http://www.cs.toronto.edu/~radford/
em.abstract.html.

12

http://www.jstatsoft.org/v32/i06
http://www.cs.princeton.edu/~blei/papers/BleiLafferty2009.pdf
http://www.cs.princeton.edu/~blei/papers/BleiLafferty2009.pdf
http://jmlr.csail.mit.edu/papers/v3/blei03a.html
http://www.siam.org/books/ot107/
http://www.cs.brown.edu/~th/papers/Hofmann-UAI99.pdf
http://www.cs.brown.edu/~th/papers/Hofmann-UAI99.pdf
http://www.jstatsoft.org/v11/i08
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19860003843_1986003843.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19860003843_1986003843.pdf
http://www.cs.toronto.edu/~radford/em.abstract.html
http://www.cs.toronto.edu/~radford/em.abstract.html

	Two Routes to Mixture Models
	From Factor Analysis to Mixture Models
	From Kernel Density Estimates to Mixture Models
	Mixture Models
	Geometry
	Identifiability
	Probabilistic Clustering

	Estimating Parametric Mixture Models
	More about the EM Algorithm
	Further Reading on and Applications of EM
	Topic Models and Probabilistic LSA

	Non-parametric Mixture Modeling
	R
	Exercises

