Lecture 20, Mixture Examples and Complements

36-402, Advanced Data Analysis
5 April 2011

Contents

IL Snoqualmie Falls Revisited| 1
[1.1 Fitting a Mixture of Gaussians to Real Data] 1
1.2 alibration-checking for the Mixture| 5
1.3 Selecting the Number of Components by Cross-Validation| 7
1.4 Interpreting the Mixture Components, or Not| 12
I1.5 Hypothesis Testing for Mixture-Model Selection|. 17

B Multvan G ans 20

[B_Exercises| 23

1 Snoqualmie Falls Revisited

1.1 Fitting a Mixture of Gaussians to Real Data

Let’s go back to the Snoqualmie Falls data set, last used in lecture 16. There
we built a system to forecast whether there would be precipitation on day ¢, on
the basis of how much precipitation there was on day ¢ — 1. Let’s look at the
distribution of the amount of precipitation on the wet days.

snoqualmie <- read.csv("snoqualmie.csv",header=FALSE)
snoqualmie.vector <- na.omit(unlist(snoqualmie))
snoq <- snoqualmie.vector[snoqualmie.vector > 0]

Figure 1| shows a histogram (with a fairly large number of bins), together
with a simple kernel density estimate. This suggests that the distribution is
rather skewed to the right, which is reinforced by the simple summary statistics

> summary (snoq)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 6.00 19.00 32.28 44.00 463.00

Notice that the mean is larger than the median, and that the distance from the
first quartile to the median is much smaller (13/100 of an inch of precipitation)
than that from the median to the third quartile (25/100 of an inch). One way
this could arise, of course, is if there are multiple types of wet days, each with
a different characteristic distribution of precipitation.

We’ll look at this by trying to fit Gaussian mixture models with varying
numbers of components. We’ll start by using a mixture of two Gaussians. We
could code up the EM algorithm for fitting this mixture model from scratch,
but instead we’ll use the mixtools package.

library(mixtools)
snoq.k2 <- normalmixEM(snoq,k=2,maxit=100,epsilon=0.01)

The EM algorithm “runs until convergence”, i.e., until things change so little
that we don’t care any more. For the implementation in mixtools, this means
running until the log-likelihood changes by less than epsilon. The default
tolerance for convergence is not 1072, as here, but 108, which can take a very
long time indeed. The algorithm also stops if we go over a maximum number
of iterations, even if it has not converged, which by default is 1000; here I have
dialed it down to 100 for safety’s sake. What happens?

> snoq.k2 <- normalmixEM(snoq,k=2,maxit=100,epsilon=0.01)
number of iterations= 59

> summary (snoq.k2)

summary of normalmixEM object:

comp 1 comp 2
lambda 0.557564 0.442436
mu 10.267390 60.012594

sigma 8.511383 44.998102
loglik at estimate: -32681.21

There are two components, with weights (lambda) of about 0.56 and 0.44, two
means (mu) and two standard deviations (sigma). The over-all log-likelihood,
obtained after 59 iterations, is —32681.21. (Demanding convergence to +£1078
would thus have required the log-likelihood to change by less than one part in
a trillion, which is quite excessive when we only have 6920 observations.)

We can plot this along with the histogram of the data and the non-parametric
density estimate. I'll write a little function for it.

plot.normal.components <- function(mixture,component.number,...) {
curve (mixture$lambda [component .number] *
dnorm(x,mean=mixture$mu[component .number] ,
sd=mixture$sigma[component.number]), add=TRUE, ...)

}

This adds the density of a given component to the current plot, but scaled by
the share it has in the mixture, so that it is visually comparable to the over-all
density.

Precipitation in Snoqualmie Falls

Density
0.03 0.04 0.05
| | |

0.02
|

0.01
|

0.00
|

Precipitation (1/100 inch)

plot(hist(snoq,breaks=101),col="grey" ,border="grey",freq=FALSE,
xlab="Precipitation (1/100 inch)",main="Precipitation in Snoqualmie Falls")

lines(density(snoq) ,lty=2)

Figure 1: Histogram (grey) for precipitation on wet days in Snoqualmie Falls.
The dashed line is a kernel density estimate, which is not completely satisfactory.
(It gives non-trivial probability to negative precipitation, for instance.)

Precipitation in Snoqualmie Falls

0
o —
o
<
o
o
[se}
oS
o

>

=

7

c

9}

(m]
N
o
o
—
o
o
[=
S
o

[I I I 1
0 100 200 300 400

Precipitation (1/100 inch)

plot(hist(snoq,breaks=101),col="grey" ,border="grey",freq=FALSE,
xlab="Precipitation (1/100 inch)",main="Precipitation in Snoqualmie Falls")

lines(density(snoq),lty=2)

sapply(1:2,plot.normal.components,mixture=snoq.k2)

Figure 2: As in the previous figure, plus the components of a mixture of two
Gaussians, fitted to the data by the EM algorithm (dashed lines). These are
scaled by the mixing weights of the components.

1.2 Calibration-checking for the Mixture

Examining the two-component mixture, it does not look altogether satisfactory
— it seems to consistently give too much probability to days with about 1 inch
of precipitation. Let’s think about how we could check things like this.

When we looked at logistic regression, we saw how to check probability
forecasts by checking calibration — events predicted to happen with probability
p should in fact happen with frequency ~ p. Here we don’t have a binary
event, but we do have lots of probabilities. In particular, we have a cumulative
distribution function F'(z), which tells us the probability that the precipitation
is < z on any given day. When z is continuous and has a continuous distribution,
F(z) should be uniformly distributedﬂ The CDF of a two-component mixture
is

F(a:) =)\1F1($) +)\2F2(.’,U) (1)
and similarly for more components. A little R experimentation gives a function
for computing the CDF of a Gaussian mixture:

pnormmix <- function(x,mixture) {
lambda <- mixture$lambda
k <- length(lambda)
pnorm.from.mix <- function(x,component) {
lambda [component] *pnorm(x,mean=mixture$mu [component] ,
sd=mixture$sigma [component])
}
pnorms <- sapply(1l:k,pnorm.from.mix,x=x)
return (rowSums (pnorms))

}

and so produce a plot like Figure[I.2 We do not have the tools to assess whether
the size of the departure from the main diagonal is signiﬁcantﬂ but the fact that
the errors are so very structured is rather suspicious.

We saw this principle when we looked at generating random variables in lecture 7.
2Though we could: the most straight-forward thing to do would be to simulate from the
mixture, and repeat this with simulation output.

Empirical CDF
0.6 0.8 1.0
| |
o
[

0.4

0.2
o

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Theoretical CDF

distinct.snoq <- sort(unique(snoq))

tcdfs <- pnormmix(distinct.snoq,mixture=snoq.k2)

ecdfs <- ecdf(snoq) (distinct.snoq)

plot(tcdfs,ecdfs,xlab="Theoretical CDF",ylab="Empirical CDF",x1lim=c(0,1),
ylim=c(0,1))

abline(0,1)

Figure 3: Calibration plot for the two-component Gaussian mixture. For each
distinct value of precipitation x, we plot the fraction of days predicted by the
mixture model to have < x precipitation on the horizontal axis, versus the actual
fraction of days < x.

1.3 Selecting the Number of Components by Cross-Validation

Since a two-component mixture seems iffy, we could consider using more com-
ponents. By going to three, four, etc. components, we improve our in-sample
likelihood, but of course expose ourselves to the danger of over-fitting. Some
sort of model selection is called for. We could do cross-validation, or we could
do hypothesis testing. Let’s try cross-validation first.

We can already do fitting, but we need to calculate the log-likelihood on the
held-out data. As usual, let’s write a function; in fact, let’s write two.

dnormalmix <- function(x,mixture,log=FALSE) {
lambda <- mixture$lambda
k <- length(lambda)
Calculate share of likelihood for all data for one component
like.component <- function(x,component) {
lambda [component] *dnorm(x,mean=mixture$mu [component] ,
sd=mixture$sigma[component])
}
Create array with likelihood shares from all components over all data
likes <- sapply(l:k,like.component,x=x)
Add up contributions from components
d <- rowSums(likes)
if (log) {
d <~ log(d)
}
return(d)

}

loglike.normalmix <- function(x,mixture) {
loglike <- dnormalmix(x,mixture,log=TRUE)
return(sum(loglike))

}
To check that we haven’t made a big mistake in the coding:

> loglike.normalmix(snoq,mixture=snoq.k2)
[1] -32681.2

which matches the log-likelihood reported by summary (snoq.k2). But our func-
tion can be used on different data!

We could do five-fold or ten-fold CV, but just to illustrate the approach we’ll
do simple data-set splitting, where a randomly-selected half of the data is used
to fit the model, and half to test.

n <- length(snoq)

data.points <- 1:n

data.points <- sample(data.points) # Permute randomly

train <- data.points[l:floor(n/2)] # First random half is training

test <- data.points[-(1:floor(n/2))] # 2nd random half is testing
candidate.component.numbers <- 2:10
loglikes <- vector(length=1+length(candidate.component.numbers))
k=1 needs special handling
mu<-mean (snoq[train]) # MLE of mean
sigma <- sd(snoq[train])*sqrt((n-1)/n) # MLE of standard deviation
loglikes[1] <- sum(dnorm(snoq[test],mu,sigma,log=TRUE))
for (k in candidate.component.numbers) {
mixture <- normalmixEM(snoq[train],k=k,maxit=400,epsilon=1e-2)
loglikes[k] <- loglike.normalmix(snoq[test],mixture=mixture)

}

When you run this, you will probably see a lot of warning messages saying
“One of the variances is going to zero; trying new starting values.” The issue
is that we can give any one value of x arbitrarily high likelihood by centering
a Gaussian there and letting its variance shrink towards zero. This is however
generally considered unhelpful — it leads towards the pathologies that keep us
from doing pure maximum likelihood estimation in non-parametric problems
(lecture 6) — so when that happens the code recognizes it and starts over.

If we look at the log-likelihoods, we see that there is a dramatic improvement
with the first few components, and then things slow down a lotE|:

> loglikes
[1] -17656.86 -16427.83 -15808.77 -15588.44 -15446.77 -15386.74
[7] -15339.25 -15325.63 -15314.22 -15315.88

(See also Figure |4). This favors nine components to the mixture. It looks like
Figure f] The calibration is now nearly perfect, at least on the training data

(Figure [L.3)).

3Notice that the numbers here are about half of the log-likelihood we calculated for the
two-component mixture on the complete data. This is as it should be, because log-likelihood
is proportional to the number of observations. (Why?) It’s more like the sum of squared
errors than the mean squared error. If we want something which is directly comparable across
data sets of different size, we should use the log-likelihood per observation.

o o) [0} (e}
8 o
g_ o
~ o
o
o
s S |
© ©
° Y
o
£
=
17}
2
o
c [e]
=
°© o
T ©
o -
3]
£
K9]
=
=
o
g 3
| IS
=
)
o
=
0]
N
)
o
T I I I I
2 4 6 8 10

Number of mixture components

lot(x=1:10, y=loglikes,xlab="Number of mixture components",
p y g p
ylab="Log-likelihood on testing data")

Figure 4: Log-likelihoods of different sizes of mixture models, fit to a random
half of the data for training, and evaluated on the other half of the data for
testing.

Precipitation in Snoqualmie Falls

o)
S
o
<
S
o
™
S
o

>

=

@

c

[}

o

N
S
o
-~
o
o
o
S
o

[I I I 1
0 100 200 300 400

Precipitation (1/100 inch)

snoq.k9 <- normalmixEM(snoq,k=9,maxit=400,epsilon=1e-2)

plot(hist(snoq,breaks=101),col="grey" ,border="grey",freq=FALSE,
xlab="Precipitation (1/100 inch)",main="Precipitation in Snoqualmie Falls")

lines(density(snoq) ,lty=2)

sapply(1:9,plot.normal.components,mixture=snoq.k9)

Figure 5: As in Figure[2] but using the nine-component Gaussian mixture.

10

1.0

Empirical CDF

0.4

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Theoretical CDF

distinct.snoq <- sort(unique(snoq))

tcdfs <- pnormmix(distinct.snoq,mixture=snoq.k9)

ecdfs <- ecdf(snoq) (distinct.snoq)

plot(tcdfs,ecdfs,xlab="Theoretical CDF",ylab="Empirical CDF",xlim=c(0,1),
ylim=c(0,1))

abline(0,1)

Figure 6: Calibration plot for the nine-component Gaussian mixture.

11

1.4 Interpreting the Mixture Components, or Not

The components of the mixture are far from arbitrary. It appears from Figure
[] that as the mean increases, so does the variance. This impression is con-
firmed from Figure[7l Now it could be that there really are nine types of rainy
days in Snoqualmie Falls which just so happen to have this pattern of distribu-
tions, but this seems a bit suspicious — as though the mixture is trying to use
Gaussians systematically to approximate a fundamentally different distribution,
rather than get at something which really is composed of nine distinct Gaus-
sians. This judgment relies on our scientific understanding of the weather, which
makes us surprised by seeing a pattern like this in the parameters. (Calling this
“scientific knowledge” is a bit excessive, but you get the idea.) Of course we are
sometimes wrong about things like this, so it is certainly not conclusive. Maybe
there really are nine types of days, each with a Gaussian distribution, and some
subtle meteorological reason why their means and variances should be linked
like this. For that matter, maybe our understanding of meteorology is wrong.

There are two directions to take this: the purely statistical one, and the
substantive one.

On the purely statistical side, if all we care about is being able to describe the
distribution of the data and to predict future precipitation, then it doesn’t really
matter whether the nine-component Gaussian mixture is true in any ultimate
sense. Cross-validation picked nine components not because there really are
nine types of days, but because a nine-component model had the best trade-
off between approximation bias and estimation variance. The selected mixture
gives a pretty good account of itself, nearly the same as the kernel density
estimate (Figure . It requires 26 parametersﬂ7 which may seem like a lot, but
the kernel density estimate requires keeping around all 6920 data points plus a
bandwidth. On sheer economy, the mixture then has a lot to recommend it.

On the substantive side, there are various things we could do to check the
idea that wet days really do divide into nine types. These are going to be
informed by our background knowledge about the weather. One of the things
we know, for example, is that weather patterns more or less repeat in an annual
cycle, and that different types of weather are more common in some parts of the
year than in others. If, for example, we consistently find type 6 days in August,
that suggests that is at least compatible with these being real, meteorological
patterns, and not just approximation artifacts.

Let’s try to look into this visually. snoq.k9%posterior is a 6920 x 9 array
which gives the probability for each day to belong to each class. I'll boil this
down to assigning each day to its most probable class:

day.classes <- apply(snoq.k9$posterior,1,which.max)

We can’t just plot this and hope to see any useful patterns, because we want to
see stuff recurring every year, and we’ve stripped out the dry days, the division

4A mean and a standard deviation for each of nine components (=18 parameters), plus
mixing weights (nine of them, but they have to add up to one).

12

9

o _|

o
C
o o
5 ©
S
[0}
©
o
©
e
s o 6
g 9
c
[0}
c
o
Q.
€
[e]
o 8

o _|

N

1
57
o J 24
[[[[[
0 50 100 150 200

Component mean

plot (0,xlim=range (snoq.k9%mu) ,ylim=range (snoq.k9$sigma) ,type="n",
xlab="Component mean", ylab="Component standard deviation")
points(x=snoq.k9%mu,y=snoq.k9$sigma,pch=as.character(1:9),
cex=sqrt (0.5+5*snoq.k9%$lambda))

Figure 7: Characteristics of the components of the 9-mode Gaussian mixture.
The horizontal axis gives the component mean, the vertical axis its standard
deviation. The area of the number representing each component is proportional
to the component’s mixing weight.

13

Comparison of density estimates
Kernel vs. Gaussian mixture

Density
0.02 0.03 0.04
| | |

0.01
|

b ___
4

0.00
]

I I I I I
0 100 200 300 400

Precipitation (1/100 inch)

plot(density(snoq),lty=2,ylim=c(0,0.04),
main=paste("Comparison of density estimates\n",
"Kernel vs. Gaussian mixture"),
xlab="Precipitation (1/100 inch)")
curve (dnormalmix (x,snoq.k9) ,add=TRUE)

Figure 8: Dashed line: kernel density estimate. Solid line: the nine-Gaussian
mixture. Notice that the mixture, unlike the KDE, gives negligible probability

to negative precipitation.

14

into years, the padding to handle leap-days, etc. Fortunately, snoqualmie has
all that, so we’ll make a copy of that and edit day.classes into it.

snoqualmie.classes <- snoqualmie
wet.days <- (snoqualmie > 0) & !(is.na(snoqualmie))
snoqualmie.classes[wet.days] <- day.classes

(Note that wet.days is a 36 x 366 logical array.) Now, it’s somewhat incon-
venient that the index numbers of the components do not perfectly correspond
to the mean amount of precipitation — class 9 really is more similar to class
6 than to class 8. (See Figure) Let’s try replacing the numerical labels in
snoqualmie.classes by those means.

snoqualmie.classes[wet.days] <- snoq.k9$mulday.classes]

This leaves alone dry days (still zero) and NA days (still NA). Now we can plot
(Figure [9).

The result is discouraging if we want to read any deeper meaning into the
classes. The class with the heaviest amounts of precipitation is most common in
the winter, but so is the classes with the second-heaviest amount of precipitation,
the etc. It looks like the weather changes smoothly, rather than really having
discrete classes. In this case, the mixture model seems to be merely a predictive
device, and not a revelation of hidden structureﬂ

5A a distribution called a “type II generalized Pareto”, where p(z) o (1 +2/0)~%~, pro-
vides a decent fit here. (See|Shalizi[2007; [Arnold|1983|on this distribution and its estimation.)
With only two parameters, rather than 26, its log-likelihood is only 1% higher than that of
the nine-component mixture, and it is almost but not quite as calibrated. One origin of the
type II Pareto is as a mixture of exponentials (Maguire et all |1952). If X|Z ~ Exp(c/Z),
and Z itself has a Gamma distribution, Z ~ I'(6,1), then the unconditional distribution of
X is type II Pareto with scale o and shape 6. We might therefore investigate fitting a finite
mixture of exponentials, rather than of Gaussians, for the Snoqualmie Falls data. We might
of course still end up concluding that there is a continuum of different sorts of days, rather
than a finite set of discrete types.

15

o
S
[}

=

Q

£ o

=} w

8 <

=

=

=

~ s 11 1t & as

c

9o

=

©

Q.

5 8

o =

Q.

o

]

2

Q

1]

Q.

U>j
o _|
wn
o 4 ===

I I I I I I
91 121 151 181 211 241

Day of year

I I T
271 301 331

plot(0,xlim=c(1,366),ylim=range(snoq.k9%mu) ,type="n",xaxt="n",
xlab="Day of year",ylab="Expected precipiation (1/100 inch)")
axis(1,at=1+(0:11)*30)
for (year in 1:nrow(snoqualmie.classes)) {
points(1:366,snoqualmie.classes[year,],pch=16,cex=0.2)

}

Figure 9: Plot of days classified according to the nine-component mixture. Hor-
izontal axis: day of the year, numbered from 1 to 366 (to handle leap-years).
Vertical axis: expected amount of precipitation on that day, according to the
most probable class for the day.

16

1.5 Hypothesis Testing for Mixture-Model Selection

An alternative to using cross-validation to select the number of mixtures is to
use hypothesis testing. The k-component Gaussian mixture model is nested
within the (k 4 1)-component model, so the latter must have a strictly higher
likelihood on the training data. If the data really comes from a k-component
mixture (the null hypothesis), then this extra increment of likelihood will follow
one distribution, but if the data come from a larger model (the alternative), the
distribution will be different, and stochastically larger.

Based on general likelihood theory, we might expect that the null distribution
is, for large sample sizes,

2(log L1 =108 L) ~ XZim (k1) —dim(k) (2)

where Ly, is the likelihood under the k-component mixture model, and dim(k)
is the number of parameters in that model. (See the appendix to Lecture 2.)
There are however several reasons to distrust such an approximation, including
the fact that we are approximating the likelihood through the EM algorithm.
We can however simply find the null distribution by simulating from the smaller
model, which is to say we can do a parametric bootstrap.

While it is not too hard to program this by handﬂ the mixtools package
contains a function to do this for us, called boot . comp, for “bootstrap compar-
ison”. Let’s try it outﬂ

See footnote regarding this next command
source("http://www.stat.cmu.edu/"cshalizi/402/lectures/20-mixture-examples/bootcomp.R")
snoq.boot <- boot.comp(snoq,max.comp=10,mix.type="normalmix",

maxit=400,epsilon=1e-2)

This tells boot.comp() to consider mixtures of up to 10 components (just
as we did with cross-validation), increasing the size of the mixture it uses when
the difference between k and k + 1 is significant. (The default is “significant at
the 5% level”, as assessed by 100 bootstrap replicates, but that’s controllable.)
The command also tells it what kind of mixture to use, and passes along control
settings to the EM algorithm which does the fitting. Each individual fit is fairly
time-consuming, and we are requiring 100 at each value of k. This took about
five minutes to run on my laptop.

This selected three components (rather than nine), and accompanied this
decision with a rather nice trio of histograms explaining why (Figure . Re-
member that boot.comp() stops expanding the model when there’s even a 5%
chance of that the apparent improvement could be due to mere over-fitting. This
is actually pretty conservative, and so ends up with rather fewer components
than cross-validation.

SEXERCISE: Try it!

7As of this writing (5 April 2011), there is a subtle, only-sporadically-appearing bug in
the version of this function which is part of the released package. The bootcomp.R file on the
class website contains a fix, kindly provided by Dr. Derek Young, and should be sourced after
loading the package, as in the code example following. Dr. Young informs me that the fix will
be incorporated in the next release of the mixtools package, scheduled for later this month.

17

1 versus 2 Components 2 versus 3 Components

o
—— ‘9 — —
3 R
3 g o |
§ g g ©
g © g
o} 5} o 4
i ¥
o
- o |
N
o — o 4
[T T 1 [T T T T 1
0 5 10 15 0 1000 2000 3000 4000 5000
Bootstrap Likelihood Bootstrap Likelihood
Ratio Statistic Ratio Statistic

3 versus 4 Components

o _
@
> o
3 _
& o©
[}
=
o |
ICH
L
o |
~N
o)

[T T T T T 1
0 500 1500 2500

Bootstrap Likelihood
Ratio Statistic

Figure 10: Histograms produced by boot.comp(). The vertical red lines mark
the observed difference in log-likelihoods.

18

Let’s explore the output of boot.comp(), conveniently stored in the object
snoq.boot.

> str(snoq.boot)

List of 3
$ p.values : num [1:3] 0 0.01 0.05
$ log.lik :List of 3

..$: num [1:100] 5.889 1.682 9.174 0.934 4.682 ...

..$: num [1:100] 2.434 0.813 3.745 6.043 1.208 ...

..$: num [1:100] 0.693 1.418 2.372 1.668 4.084 ...
$ obs.log.lik: num [1:3] 5096 2354 920

This tells us that snoq.boot is a list with three elements, called p.values,
log.lik and obs.log.lik, and tells us a bit about each of them. p.values
contains the p-values for testing H; (one component) against Hs (two compo-
nents), testing Ho against Hs, and Hjz against Hy. Since we set a threshold
p-value of 0.05, it stopped at the last test, accepting Hs. (Under these circum-
stances, if the difference between k = 3 and k = 4 was really important to us, it
would probably be wise to increase the number of bootstrap replicates, to get
more accurate p-values.) log.lik is itself a list containing the bootstrapped
log-likelihood ratios for the three hypothesis tests; obs.log.1lik is the vector of
corresponding observed values of the test statistic.

Looking back to Figure [d] there is indeed a dramatic improvement in the
generalization ability of the model going from one component to two, and from
two to three, and diminishing returns to complexity thereafter. Stopping at
k = 3 produces pretty reasonable results, though repeating the exercise of Figure
[]is no more encouraging for the reality of the latent classes.

19

2 Multivariate Gaussians
Most of this section repeats the appendix to Lecture 4.

The multivariate Gaussian is just the generalization of the ordinary Gaussian
to vectors. Scalar Gaussians are parameterized by a mean u and a variance o2,
which we symbolize by writing X ~ N (u,0?). Multivariate Gaussians, likewise,
are parameterized by a mean vector [, and a variance-covariance matrix 3,
written X ~ MVN (i, X). The components of /i are the means of the different
components of X. The i, j** component of ¥ is the covariance between X* and
X7 (so the diagonal of ¥ gives the component variances).

Just as the probability density of scalar Gaussian is

p(x) = (2#02)_1/2 exp {—;(17_2'“)2} (3)

g

the probability density of the multivariate Gaussian is
_ 1
p(d) = Crden) exp { 5@ -) 37 -)} ()

Finally, remember that the parameters of a Gaussian change along with linear
transformations

X ~N(p,0%) < aX +b~ N(ap+b,a*c?) (5)

and we can use this to “standardize” any Gaussian to having mean 0 and vari-
ance 1 (by looking at %) Likewise, if

X ~ MYN(ji, %) (6)

then L .
aX +b~ MVN(aji +b,aXal) (7)

In fact, the analogy between the ordinary and the multivariate Gaussian is so
complete that it is very common to not really distinguish the two, and write N
for both.

The multivariate Gaussian density is most easily visualized when d = 2,
as in Figure The probability contours are ellipses. The density changes
comparatively slowly along the major axis, and quickly along the minor axis.
The two points marked + in the figure have equal geometric distance from i,
but the one to its right lies on a higher probability contour than the one above
it, because of the directions of their displacements from the mean.

In fact, we can use some facts from linear algebra to understand the general
pattern here, for arbitrary multivariate Gaussians in an arbitrary number of
dimensions. The covariance matrix X is symmetric and positive-definite, so we
know from matrix algebra that it can be written in terms of its eigenvalues and
eigenvectors:

> =vldv (8)

20

library (mvtnorm)
x.points <- seq(-3,3,length.out=100)
y.points <- x.points
z <- matrix(0,nrow=100,ncol=100)
mu <- c(1,1)
sigma <- matrix(c(2,1,1,1),nrow=2)
for (i in 1:100) {
for (j in 1:100) {
z[i,j] <- dmvnorm(c(x.points[i],y.points[j]) ,mean=mu,sigma=sigma)
}
}

contour (x.points,y.points,z)

Figure 11: Probability density contours for a two-dimensional multivariate
1

1) (solid dot), and variance matrix ¥ =

Gaussian, with mean ji = (

2 . Using expand.grid, as in Lecture 6, would be more elegant coding

1 1 21
than this double for loop.

where d is the diagonal matrix of the eigenvalues of X, and v is the matrix whose
columns are the eigenvectors of 3. (Conventionally, we put the eigenvalues in
d in order of decreasing size, and the eigenvectors in v likewise, but it doesn’t
matter so long as we’re consistent about the ordering.) Because the eigenvectors
are all of length 1, and they are all perpendicular to each other, it is easy to
check that vI'v =1, so v-! = v and v is an orthogonal matrix. What actually
shows up in the equation for the multivariate Gaussian density is X!, which is

(vidv) "t =vtd! (VT)71

=vid v 9)

Geometrically, orthogonal matrices represent rotations. Multiplying by v
rotates the coordinate axes so that they are parallel to the eigenvectors of 3.
Probabilistically, this tells us that the axes of the probability-contour ellipse are
parallel to those eigenvectors. The radii of the probability-contour ellipses are
proportional to the square roots of the eigenvalues. To see that, look carefully
at the math. Fix a level for the probability density whose contour we want, say
fo. Then we have

_ 1

fo = (2rdet®) d/Qexp{—2(f—ﬁ)-El(f—ﬁ)} (10)
¢ = @) -SE-) ()
= @A NG) (12
(Z — @) vTd=12d=V2v(Z - i) (13)

T
(d*l/Qv(f - ﬁ)) (d*l/Qv(f - ﬁ)) (14)

2
- Hd—l/%(f - ﬁ)H (15)
where ¢ combines fy and all the other constant factors, and d—'/2 is the diag-

onal matrix whose entries are one over the square roots of the eigenvalues of
3. The v(Z — ji) term takes the displacement of & from the mean, [, and re-
places the components of that vector with its projection on to the eigenvectors.
Multiplying by d='/2 then scales those projections, and so the radii have to be
proportional to the square roots of the eigenvaluesﬂ

In terms of inference, the multivariate Gaussian again basically works the
same way as the univariate Gaussian. If we use maximum likelihood, the esti-
mated mean vector is just the sample mean vector, and the estimated covariance
matrix is just the sample covariance matrix.

Computationally, it is not hard to write functions to calculate the multi-
variate Gaussian density, or to generate multivariate Gaussian random vectors.
Unfortunately, no one seems to have thought to put a standard set of such
functions in the basic set of R packages, so you have to use a different library.

81f you find all this manipulation of eigenvectors and eigenvalues of the covariance matrix
very reminiscent of principal components analysis, you're right; this was one of the ways in
which PCA was originally discovered. But PCA does not require any distributional assump-
tions.

22

mvtnorm contains functions for calculating the density, cumulative distribution
and quantiles of the multivariate Gaussian, and for generating random Vectorsﬂ
The package mixtools, which we are using for mixture models, includes func-
tions for the multivariate Gaussian density and for random-vector generation.

3 Exercises

Not to be handed in.

1. Write a function to calculate the density of a multivariate Gaussian with
a given mean vector and covariance matrix. Check it against an existing
function from one of the packages mentioned above.

2. Write a function to generate multivariate Gaussian random vectors, using
rnorm.

3. Write a function to simulate from a Gaussian mixture model.

4. Write a function to fit a mixture of exponential distributions using the
EM algorithm. Does it do any better at discovering sensible structure in
the Snoqualmie Falls data?

References

Arnold, Barry C. (1983). Pareto Distributions. Fairland, Maryland: Interna-
tional Cooperative Publishing House.

Maguire, B. A., E. S. Pearson and A. H. A. Wynn (1952). “The time intervals
between industrial accidents.” Biometrika, 39: 168-180. URL http://www.
jstor.org/pss/2332475.

Shalizi, Cosma Rohilla (2007). “Maximum Likelihood Estimation and Model
Testing for g-Exponential Distributions.” Physical Review E, submitted.
URL http://arxiv.org/abs/math.ST/0701854.

91t also has such functions for multivariate ¢ distributions, which are to multivariate Gaus-
sians exactly as ordinary t distributions are to univariate Gaussians.

23

http://www.jstor.org/pss/2332475
http://www.jstor.org/pss/2332475
http://arxiv.org/abs/math.ST/0701854

	Snoqualmie Falls Revisited
	Fitting a Mixture of Gaussians to Real Data
	Calibration-checking for the Mixture
	Selecting the Number of Components by Cross-Validation
	Interpreting the Mixture Components, or Not
	Hypothesis Testing for Mixture-Model Selection

	Multivariate Gaussians
	Exercises

