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We have spent a lot of time looking at ways of figuring out how one variable
(or set of variables) depends on another variable (or set of variables) — this

is the core idea in regression and in conditional density estimation. We have
also looked at how to estimate the joint distribution of variables, both with
kernel density estimation and with models like factor and mixture models. The
later two show an example of how to get the joint distribution by combining a
conditional distribution (observables given factors; mixture components) with a
marginal distribution (Gaussian distribution of factors; the component weights).
When dealing with complex sets of dependent variables, it would be nice to
have a general way of composing conditional distributions together to get joint
distributions, and especially nice if this gave us a way of reasoning about what
we could ignore, of seeing which variables are irrelevant to which other variables.
This is what graphical models let us do.
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Figure 1: Illustration of a typical model with two latent factors (F} and Fy, in
circles) and four observables (X7 through Xy).

1 Conditional Independence and Factor Models

The easiest way into this may be to start with the diagrams we drew for factor
analysis. There, we had observables and we had factors, and each observable
depended on, or loaded on, some of the factors. We drew a diagram where we
had nodes, standing for the variables, and arrows running from the factors to the
observables which depended on them. In the factor model, all the observables
were conditionally independent of each other, given all the factors:

P
P(X1, Xa, . Xp|F1, Fo, . Fy) = [ [ p(Xil Py, . Fy) (1)

i=1

But in fact observables are also independent of the factors they do not load on,
so this is still too complicated. Let’s write loads(i) for the set of factors on
which the observable X; loads. Then

p

P(X1, X, Xy P, Fa, o Fy) = [ (il Foaas(s)) (2)
i=1

Consider Figure [I] The conditional distribution of observables given factors
is
p(X1, Xo, X3, Xy|Fy, Fo) = p(Xa|Fy, Fo)p(Xo| Py, F2)p(Xs | F1)p(Xa|F2) - (3)

X, loads on F; and F, so it is independent of everything else, given those
two variables. X; is unconditionally dependent on X5, because they load on



common factors, F; and Fy; and X7 and X3 are also dependent, because they
both load on Fj. In fact, X; and Xs are still dependent given Fj, because
X5 still gives information about Fh. But X; and X3 are independent given
Fi, because they have no other factors in common. Finally, X3 and X, are
unconditionally independent because they have no factors in common. But
they become dependent given X7, which provides information about both the
common factors.

None of these assertions rely on the detailed assumptions of the factor model,
like Gaussian distributions for the factors, or linear dependence between factors
and observables. What they rely on is that X is independent of everything else,
given the factors it loads on. The idea of graphical models is to generalize this,
by focusing on relations of direct dependence, and the conditional independence
relations implied by them.



2 Directed Acyclic Graph (DAG) Models

We have a collection of variables, which to be generic I'll write X, X»,... X,,.
These may be discrete, continuous, or even vectors; it doesn’t matter. We
represent these visually as nodes in a graph. There are arrows connecting some
of these nodes. If an arrow runs from X; to Xj;, then X; is a parent of X;.
This is, as the name “parent” suggests, an anti-symmetric relationship, i.e., X;
cannot also be the parent of X;. This is why we use an arrow, and why the
graph is directedﬂ We write the set of all parents of X; as parents(j); this
generalizes the notion of the factors which an observable loads on to. The joint
distribution “decomposes according to the graph”:

/4

p(Xh X27 cee Xp) = Hp(Xi|Xparcnts(i)) (4)
=1

If X; has no parents, because it has no incoming arrows, take p(Xi| Xparents(i))
just to be the marginal distribution p(X;). Such variables are called exogenous;
the others, with parents, are endogenous. An unfortunate situation could
arise where X is the parent of X5, which is the parent of X3, which is the
parent of X;. Perhaps, under some circumstances, we could make sense of this
and actually calculate with Eq. |4} but the general practice is to rule it out by
assuming the graph is acyclic, i.e., that it has no cycles, i.e., that we cannot,
by following a series of arrows in the graph, go from one node to other nodes
and ultimately back to our starting point. Altogether we say that we have a
directed acyclic graph, or DAG, which represents the direct dependencies
between variablesP]

What good is this? The primary virtue is that if we are dealing with a
DAG model, the graph tells us all the dependencies we need to know; those
are the conditional distributions of variables on their parents, appearing in the
product on the right hand side of Eq. (This includes the distribution of
the exogeneous variables.) This fact has two powerful sets of implications, for
probabilistic reasoning and for statistical inference.

Let’s take inference first, because it’s more obvious: all that we have to
estimate are the conditional distributions p(Xi|Xparents(i)): We do not have
to estimate the distribution of X; given all of the other variables, unless of
course they are all parents of X;. Since estimating distributions, or even just
regressions, conditional on many variables is hard, it is extremely helpful to be
able to read off from the graph which variables we can ignore. Indeed, if the
graph tells us that X; is exogeneous, we don’t have to estimate it conditional
on anything, we just have to estimate its marginal distribution.

1See Appendix [B|for a brief review of the ideas and jargon of graph theory.
2See the appendix for remarks on undirected graphical models, and graphs with cycles.
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Figure 2: DAG for a discrete-time Markov process. At each time ¢, X; is the
child of X;_; and the parent of X;1.

2.1 Conditional Independence and the Markov Property

The probabilistic implication of Eq. []is perhaps even more important, and that
has to do with conditional independence. Pick any two variables X; and Xj,
where X is not a parent of X;. Consider the distribution of X; conditional on
its parents and X ;. There are two possibilities. (i) X; is not a descendant of Xj.
Then we can see that X; and X; are conditionally independent. This is true no
matter what the actual conditional distribution functions involved are; it’s just
implied by the joint distribution respecting the graph. (ii) Alternatively, X; is
a descendant of X;. Then in general they are not independent, even conditional
on the parents of X;. So the graph implies that certain conditional independence
relations will hold, but that others in general will not hold.

As you know from your probability courses, a sequence of random variables
X1, X5, X3,... forms a Markov processﬂ when “the past is independent of the
future given the present”: that is,

X1 (Xeo1, Xe—oy ... X1)| Xy (5)
from which it follows that
(Xi41s Xeva, Xega, - A Xi1, Xioo, o X)Xy (6)

which is called the Markov property. DAG models have a similar property:
if we take any collection of nodes I, it is independent of its non-descendants,
given its parents:

XIJ'LXnon—descendants(I) |Xparents(1) (7)

This is the directed graph Markov property. The ordinary Markov property
is in act a special case of this, when the graph looks like Figure

3 After the Russian mathematician A. A. Markov, who introduced the theory of Markov
processes in the course of a mathematical dispute with his arch-nemesis, to show that prob-
ability and statistics could apply to dependent events, and hence that Christianity was not
necessarily true (I am not making this up: [Basharin et al.l 2004)).

4T0 see this, take the “future” nodes, indexed by ¢ + 1 and up, as the set I. Their parent
consists just of X, and all their non-descendants are the even earlier nodes at times t — 1,
t— 2, etc.



Figure 3: DAG for a mixture model. The latent class Z is exogenous, and
the parent of the observable random vector X. (If the components of X are
conditionally independent given Z, they could be represented as separate boxes
on the lower level.

3 Examples of DAG Models and Their Uses

Factor models are examples of DAG models (as we’ve seen). So are mixture
models (Figure|3) and Markov chains (see above). DAG models are considerably
more flexible, however, and can combine observed and unobserved variables in
many ways.

Consider, for instance, Figure ] Here there are two exogeneous variables,
labeled “Smoking” and “Asbestos”. Everything else is endogenous. Notice that
“Yellow teeth” is a child of “Smoking” alone. This does not mean that (in
the model) whether someone’s teeth get yellowed (and, if so, how much) is a
function of smoking alone; it means that whatever other influences go into that
are independent of the rest of the model, and so unsystematic that we can think
about those influences, taken together, as noise.

Continuing, the idea is that how much someone smokes influences how yellow
their teeth become, and also how much tar builds up in their lungs. Tar in the
lungs, in turn, leads to cancer, as does by exposure to asbestos.

Now notice that, in this model, teeth-yellowing will be unconditionally de-
pendent on, i.e., associated with, the level of tar in the lungs, because they share
a common parent, namely smoking. Yellow teeth and tarry lungs will however
be conditionally independent given that parent, so if we control for smoking we
should not be able to predict the state of someone’s teeth from the state of their
lungs or vice versa.

On the other hand, smoking and exposure to asbestos are independent, at
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Figure 4: DAG model indicating (hypothetical) relationships between smoking,
asbestos, cancer, and covariates.



least in this model, as they are both exogenousﬂ Conditional on whether some-
one has cancer, however, smoking and asbestos will become dependent.

To understand the logic of this, suppose (what is in fact true) that both
how much someone smokes and how much they are exposed to asbestos raises
the risk of cancer. Conditional on not having cancer, then, one was probably
exposed to little of either tobacco smoke or asbestos. Conditional on both not
having cancer and having been exposed to a high level of asbestos, one probably
was exposed to an unusually low level of tobacco smoke. Vice versa, no cancer
plus high levels of tobacco tend to imply especially little exposure to asbestos.
We thus have created a negative association between smoking and asbestos by
conditioning on cancer. Naively, a regression where we “controlled for” cancer
would in fact tell us that exposure to asbestos keeps tar from building up in the
lungs, prevents smoking, and whitens teeth.

More generally, conditioning on a third variable can create dependence be-
tween otherwise independent variables, when what we are conditioning on is a
common descendant of the variables in questionﬁ This conditional dependence
is not some kind of finite-sample artifact or error — it really is there in the joint
probability distribution. If all we care about is prediction, then it is perfectly
legitimate to use it. In the world of Figure [ it really is true that you can
predict the color of someone’s teeth from whether they have cancer and how
much asbestos they’ve been exposed to, so if that’s what you want to predictﬂ
why not use that information? But if you want to do more than just make
predictions without understanding, if you want to understand the structure ty-
ing together these variables, if you want to do science, if you don’t want to go
around telling yourself that asbestos whitens teeth, you really do need to know
the graph.

5If we had two variables which in some physical sense were exogenous but dependent on
each other, we would represent them in a DAG model by either a single vector-valued random
variable (which would get only one node), or as children of a latent unobserved variable, which
was truly exogenous.

SEconomists, psychologists, and other non-statisticians often repeat the advice that if you
want to know the effect of X on Y, you should not condition on Z when Z is endogenous.
This is bit of folklore is an incorrect relic of the days of ignorance, though it shows a sound
indistinct groping towards a truth those people were unable to grasp. If we want to know
whether asbestos is associated with tar in the lungs, conditioning on the yellowness of teeth
is fine, even though that is an endogenous variable.

"Maybe you want to guess who’d be interested in buying whitening toothpaste.



3.1 Missing Variables

Suppose that we do cannot observe one of the variables, such as the quantity
of tar in the lungs, but we somehow know all of the conditional distributions
required by the graph. (Tar build-up in the lungs might indeed be hard to
measure for living people.) Because we have a joint distribution for all the
variables, we could estimate the conditional distribution of one of them given
the rest, using the definition of conditional probability and of integration:

__p(X, X, Xy, Xy, X, X))
Jdzip(X1, Xo, Xi 1,24, Xiy1, X,

p(Xi| X1, Xo, Xio1, Xiy1, Xp) (8)

We could in principle do this for any joint distribution. When the joint distri-
bution comes from a DAG model, however, we can simplify this considerably.
Recall that, from Eq. [7] X; conditioning on its parents makes X; independent
of all its non-descendants. We can therefore drop from the conditioning ev-
erything which isn’t either a parent of X;, or a descendant. In fact, it’s not
hard to see that given the children of X;, its more remote descendants are also
redundant. Actually doing the calculation then boils down to a version of the
EM algorithmﬂ

If we observe only a subset of the other variables, we can still use the DAG

to determine which ones actually matter to estimating X;, and which ones are
superfluous. The calculations then however become much more intricate )

8Graphical models, especially directed ones, are often called “Bayes nets” or “Bayesian
networks”, because this equation is, or can be seen as, a version of Bayes’s rule. Since of
course it follows directly from the definition of conditional probability, there is really nothing
Bayesian about them.

9There is an extensive discussion of relevant methods in |Jordan| (1998).



4 Further Reading

The paper collection (1998) is actually extremely good, unlike most col-
lections of edited papers; [Jordan and Sejnowski (2001)) is also useful. [Lauritzen
(1996)) is thorough but more mathematically demanding. The books by [Spirtes
let al.| (1993} 2001) and by [Pearl (1988, 2000, [2009) are classics, especially for
their treatment of causality, of which much more soon. dis-
cusses applications to psychology.

While I have presented DAG models as an outgrowth of factor analysis, their
historical ancestry is actually closer to the “path analysis” models introduced by
the great mathematical biologist Sewall Wright in the 1920s to analyze processes
of development and genetics. These proved extremely influential in psychology.
is a decent textbook on them, but does not make enough contact
with modern graphical methods developed in statistics and machine learning.

10



A Non-DAG Graphical Models: Undirected Graphs
and Directed Graphs with Cycles

A.1 Undirected Graphs

There is a lot of work on probability models which are based on undirected
graphs, in which the relationship between random variables linked by edges
is completely symmetric, unlike the case of DAG@ Since the relationship is
symmetric, the preferred metaphor is not “parent and child”, but “neighbors”.
The models are sometimes called Markov networks or Markov random
fields, but since DAG models have a Markov property of their own, this is not
a happy choice of name, and I'll just call them “undirected graphical models”.

The key Markov property for undirected graphical models is that any set of
nodes I is independent of the rest of the graph given its neighbors:

XIJ'LXnon—neighbors(I) ‘Xneighbors(l) (9)

This corresponds to a factorization of the joint distribution, but a more complex
one than that of Eq.[4] because a symmetric neighbor-of relation gives us no way
of ordering the variables, and conditioning the later ones on the earlier ones.
The trick turns out to go as follows. First, as a bit of graph theory, a clique
is a set of nodes which are all neighbors of each other, and which cannot be
expanded without losing that property. We write the collection of all cliques in
a graph G as cliques(G). Second, we introduce potential functions v, which
take clique configurations and return non-negative numbers. Third, we say that
a joint distribution is a Gibbs distributiorE when

(X1, Xo, o X)) oc [ e(Xiee) (10)

c€ecliques(G)

That is, the joint distribution is a product of factors, one factor for each clique.
Frequently, one introduces what are called potential functions, U. = log ¢,
and then one has

p(Xl, XQ; e Xp) X 67 ZcequueS(G) Ui(Xiee)

(11)

The key correspondence is what is sometimes called the Gibbs-Markov
theorem: a distribution is a Gibbs distribution with respect to a graph G if,
and only if, it obeys the Markov property with neighbors defined according to

10T am told that this is more like the idea of causation in Buddhism, as something like
“co-dependent origination”, than the asymmetric one which Europe and the Islamic world
inherited from the Greeks (especially Aristotle), but you would really have to ask a philosopher
about that.

L After the American physicist and chemist J. W. Gibbs, who introduced such distributions
as part of statistical mechanics, the theory of the large-scale patterns produced by huge
numbers of small-scale interactions.

11
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In many practical situations, one combines the assumption of an undirected
graphical model with the further assumption that the joint distribution of all
the random variables is a multivariate Gaussian, giving a Gaussian graphical
model. An important consequence of this assumption is that the graph can be
“read off” from the inverse of the covariance matrix X, sometimes called the
precision matrix. Specifically, there is an edge linking X; to X; if and only
if (X71);; # 0. (See|Lauritzen (1996) for an extensive discussion.) These ideas
sometimes still work for non-Gaussian distributions, when there is a natural
way of transforming them to be Gaussian (Liu et al., |2009), though it is unclear
just how far that goes.

Further reading Markov random fields where the graph is a regular lattice
are used extensively in spatial statistics. Good introductory-level treatments are
provided by |[Kindermann and Snell (1980) (the full text of which is free online),
and by |Guttorp| (1995), which also covers the associated statistical methods.
Winkler| (1995) is also good, but presumes more background in statistical the-
ory. (I would recommend reading it after Guttorp.) |Guyon|(1995) is at a similar
level of sophistication, but, unlike the previous references, emphasizes the situa-
tions where the graph is not a regular lattice. |Griffeath| (1976), while presuming
more probability theory on the part of the reader, is extremely clear and insight-
ful, including what is simultaneously one of the deepest and most transparent
proofs of the Gibbs-Markov theorem. [Lauritzen| (1996) is a mathematically rig-
orous treatment of graphical models from the viewpoint of theoretical statistics,
covering both the directed and undirected cases.

If you are curious about Gibbs distributions in, so to speak, their natural
habitat, the book by |Sethnal (2006)), also free online, is the best introduction to
statistical mechanics I have seen, and presumes very little knowledge of actual
physics on the part of the reader. [Honerkamp| (2002)) is less friendly, but tries
harder to make connections to statistics. If you already know what an expo-
nential family is, then Eq.[11]is probably extremely suggestive, and you should
read [Mandelbrot| (1962)).

12This theorem was proved, in slightly different versions, under slightly different condi-
tions, and by very different methods, more or less simultaneously by (alphabetically) Do-
brushin, Griffeath, Grimmett, and Hammersley and Clifford, and almost proven by Ru-
elle. In the statistics literature, it has come to be called the “Hammersley-Clifford” the-
orem, for no particularly good reason. In my opinion, the clearest and most interest-
ing version of the theorem is that of |Griffeath| (1976), an elementary exposition of which
is given by Pollard (http://www.stat.yale.edu/~pollard/Courses/251.spring04/Handouts/
Hammersley-Clifford.pdf). (Of course, Griffeath was one of my Ph.D. supervisors, so dis-
count accordingly.) Calling it the “Gibbs-Markov theorem” says more about the content, and
is fairer to all concerned.

12
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Figure 5: Directed but cyclic graphical model of a feedback loop. Signs (4, —
on arrows are “guides to the mind”. Cf. Figure [6]

A.2 Directed but Cyclic Graphs

Much less work has been done on directed graphs with cycles. It is very hard to
give these a causal interpretation, in the fashion described in the next lecture.
Feedback processes are of course very common in nature and technology, and one
might think to represent these as cycles in a graph. A model of a thermostat, for
instance, might have variables for the set-point temperature, the temperature
outside, how much the furnace runs, and the actual temperature inside, with a
cycle between the latter two (Figure [5)).

Thinking in this way is however simply sloppy. It always takes some time to
traverse a feedback loop, and so the cycle really “unrolls” into an acyclic graph
linking similar variables at different times (Figure @ Sometime&*f|7 it is clear
that when people draw a diagram like Figure [f] the incoming arrows really refer
to the change, or rate of change, of the variable in question, so it is merely a
visual short-hand for something like Figure [G]

Directed graphs with cycles are thus primarily useful when measurements are
so slow or otherwise imprecise that feedback loops cannot be unrolled into the
actual dynamical processes which implement them, and one is forced to hope
that one can reason about equilibria insteaﬂ If you insist on dealing with
cyclic directed graphical models, see Richardson| (1996)); [Lacerda et al.| (2008)
and references therein.

13 As in [Puccia and Levins (1985), and the LoopAnalyst package based on it (Dinnol [2009).
14Economists are fond of doing so, generally without providing any rationale, based in
economic theory, for supposing that equilibrium 4s a good approximation.

13
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Figure 6: Directed, acyclic graph for the situation in Figure taking into
account the fact that it takes time to traverse a feedback loop. One should
imagine this repeating to times ¢ + 2, t 4+ 3, etc., and extending backwards to
times t — 1, t — 2, etc., as well. Notice that there are no longer any cycles.
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B Rudimentary Graph Theory

A graph G is built out of a set of nodes or vertices, and edges or links
connecting them. The edges can either be directed or undirected. A graph
with undirected edges, or an undirected graph, represents a symmetric binary
relation among the nodes. For instance, in a social network, the nodes might
be people, and the relationship might be “spends time with”. A graph with
directed edges, or arrows, is called a directed graph or digrapHEL and repre-
sents an asymmetric relation among the nodes. To continue the social example,
the arrows might mean “admires”, pointing from the admirer to the object of
admiration. If the relationship is reciprocal, that is indicated by drawing a pair
of arrows between the nodes, one in each direction (as between A and B in
Figure .

A directed path from node V; to node V5 is a sequence of edges, beginning
at V7 and ending at V5, which is connected and which follows the orientation
of the edges at each step. An undirected path is a sequence of connected
edges ignoring orientation. (Every path in an undirected graph is undirected.)
If there is a directed path from V; to Vo and from V5 to Vi, then those two
nodes are strongly connected. (In Figure[7] A and C are strongly connected,
but A and D are not.) If there are undirected paths in both directions, they
are weakly connected. (A and D are weakly connected.) Strong connection
implies weak connection. (EXERCISE: Prove this.) We also stipulate that every
node is strongly connected to itself.

Strong connection is an equivalence relation, i.e., it is reflective, symmetric
and transitive. (EXERCISE: Prove this.) Weak connection is also an equivalence
relation. (EXERCISE: Prove this.) Therefore, a graph can be divided into non-
overlapping strongly connected components, consisting of maximal sets of
nodes which are all strongly connected to each other. (In Figure[7} A, B and C
form one strongly connected component, and D and F form components with
just one node.) It can also be divided into weakly connected components,
maximal sets of nodes which are all weakly connected to each other. (There is
only one weakly connected component in the graph. If either of the edges into
D were removed, there would be two weakly connected components.)

A cycle is a directed path from a node to itself. The existence of two distinct
nodes which are strongly connected to each other implies the existence of a cycle,
and vice versa. A directed graph without cycles is called acyclic. Said another
way, an acyclic graph is one where all the strongly connected components consist
of individual nodes. The weakly connected components can however contain an
unlimited number of nodes.

In a directed acyclic graph, or DAG, it is common to refer to the nodes
connected by an edge as “parent” and “child” (so that the arrow runs from
the parent to the child). If there is a directed path from Vi to Vs, then V is
the ancestor of V,, which is the descendant of V7. In the jargon, the ances-
tor/descendant relation is the transitive closure of the parent/child relation.

150r, more rarely, a Guthrie diagram.

15



Figure 7: Example for illustrating the concepts of graph theory.
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