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1 Causation and Counterfactuals

Take a piece of cotton, say an old rag. Apply flame to it; the cotton burns. We
say the fire caused the cotton to burn. The flame is certainly correlated with
the cotton burning, but, as we all know, correlation is not causation (Figure[1)).
Perhaps every time we set rags on fire we handle them with heavy protective
gloves; the gloves don’t make the cotton burn, but the statistical dependence is
strong. So what is causation?

We do not have to settle 2500 years (or more) of argument among philoso-
phers and scientists. For our purposes, it’s enough to realize that the concept
has a counter-factual component: if, contrary to fact, the flame had not been
applied to the rag, then the rag would not have burnecﬂ On the other hand,
the fire makes the cotton burn whether we are wearing protective gloves or not.

f you immediately start thinking about quibbles, like “What if we hadn’t applied the
flame, but the rag was struck by lightning?”, then you may have what it takes to be a
philosopher.



T USED T THINK, THEN T Took A | | SOUNDS LKE THE
CORRELATION mFUED STATISTICS CLASS. cmrss HELPED.
CAUSATION. Now I DON'T, WELL, MH,,BE

0% 159089

Figure 1: “Correlation doesn’t imply causation, but it does waggle its eyebrows
suggestively and gesture furtively while mouthing ‘look over there”’ (Image
and text copyright by Randall Munroe, used here under a Creative Commons
attribution-noncommercial license; see http://xkcd. com/552/))

To say it a somewhat different way, the distributions we observe in the
world are the outcome of complicated stochastic processes. The mechanisms
which set the value of one variable inter-lock with those which set other vari-
ables. When we make a probabilistic prediction by conditioning — whether we
predict E[Y|X = z] or P(Y|X = z) or something more complicated — we are
just filtering the output of those mechanisms, picking out the cases where they
happen to have set X to the value x, and looking at what goes along with that.

When we make a causal prediction, we want to know what would happen if
the usual mechanisms controlling X were suspended and it was set to . How
would this change propagate to the other variables? What distribution would
result for Y? This is often, perhaps even usually, what people really want
to know from a data analysis, and they settle for statistical prediction either
because they think it is causal prediction, or for lack of a better alternative.

Causal inference is the undertaking of trying to answer causal questions
from empirical data. Its fundamental difficulty is that we are trying to derive
counter-factual conclusions with only factual premises. As a matter of habit,
we come to expect cotton to burn when we apply flames. We might even say, on
the basis of purely statistical evidence, that the world has this habit. But as a
matter of pure logic, no amount of evidence about what did happen can compel
beliefs about what would have happened under non-existent circumstancesﬂ
(For all my data shows, all the rags I burn just so happened to be on the verge
of spontaneously bursting into flames anyway.) We must supply some counter-
factual or causal premise, linking what we see to what we could have seen, to

2The first person to really recognize this was the medieval Muslim theologian and anti-
philosopher jal Ghazalil (1100/1997)). (See Kogan| (1985) for some of the history.) Very similar
arguments were revived centuries later by Hume| (1739); whether there was some line of
intellectual descent linking them, I don’t know.
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derive causal conclusions.
One of our goals, then, in causal inference will be to make the causal premises
as weak and general as possible, so as to limit what we take on faith.

2 Causal Graphical Models

We will need a formalism for representing causal relations. It will not surprise
you by now to learn that these will be graphical models. We will in fact use DAG
models from last time, with “parent” interpreted to mean “directly causes”.
These will be causal graphical models, or graphical causal modelsﬂ

We make the following assumptions.

1. There is some directed acyclic graph G representing the relations of cau-
sation among the our variables.

2. The Causal Markov condition: The joint distribution of the variables
obeys the Markov property on G.

3. Faithfulness: The joint distribution has all of the conditional indepen-
dence relations implied by the causal Markov property, and only those
conditional independence relations.

The point of the faithfulness condition is to rule out “conspiracies among the
parameters”, where, say, two causes of a common effect, which would typically
be dependent conditional on that effect, have their impact on the joint effect and
their own distributions matched just so exactly that they remain conditionally
independent.

2.1 Calculating the “effects of causes”

Let’s fix two sub-sets of variables in the graph, X¢ and Xg. (Assume they don’t
overlap, and call everything else Xy.) If we want to make a probabilistic predic-
tion for Xg’s value when X, takes a particular value, z., that’s the conditional
distribution, P (Xg|X. = z.), and we saw last time how to calculate that using
the graph. Conceptually, this amounts to selecting, out of the whole population
or ensemble, the sub-population or sub-ensemble where X, = ., and accepting
whatever other behavior may go along with that.

Now suppose we want to ask what the effect would be, causally, of setting X«
to a particular value x.. We represent this by “doing surgery on the graph”: we
(i) eliminate any arrows coming in to nodes in X, (ii) fix their values to ., and
(iii) calculate the resulting distribution for Xg in the new graph. By steps (i)
and (ii), we imagine suspending or switching off the mechanisms which ordinarily

3Because DAG models have joint distributions which factor according to the graph, we can
always write them in the form of a set of equations, as X; = fi(Xparents(i)) + €;, with the
catch that the noise €; is not necessarily independent of X;’s parents. This is what is known,
in many of the social sciences, as a structural equation model. So those are, strictly, a
sub-class of DAG models. They are also often used to represent causal structure.



set X.. The other mechanisms in the assemblage are left alone, however, and so
step (iii) propagates the fixed values of X, through them. We are not selecting
a sub-population, but producing a new one.

If setting X, to different values, say x. and z.,, leads to different distributions
for Xg, then we say that X, has an effect on Xz — or, slightly redundantly,
has a causal effect on Xg. Sometimesﬂ “the effect of switching from x.
to 2 specifically refers to a change in the expected value of Xg, but since
profoundly different distributions can have the same mean, this seems needlessly
rcstrictivcﬂ If one is interested in average effects of this sort, they are computed
by the same procedure.

It is convenient to have a short-hand notation for this procedure of causal
conditioning. One more-or-less standard idea, introduced by Judea Pearl, is to
introduce a do operator which encloses the conditioning variable and its value.
That is,

P(Xg|X. =)

is probabilistic conditioning, or selecting a sub-ensemble from the old mecha-
nisms; but

P (Xg|do(X. = x.))

is causal conditioning, or producing a new ensemble. Sometimes one sees this
written as P(Xg|X.=z.), or even P(Xg|Z.). I am actually fond of the do
notation and will use it.

Suppose that P(Xg|X. =x.) = P(Xg|do(X. = x.)). This would be ex-
tremely convenient for causal inference. The conditional distribution on the
right is the causal, counter-factual distribution which tells us what would hap-
pen if . was imposed. The distribution on the left is the ordinary probabilistic
distribution we have spent years learning how to estimate from data. When do
they coincide?

One time when they would is if X, contains all the parents of X, and none
of its descendants. Then, by the Markov property, Xg is independent of all
other variables given X, and removing the arrows into X¢ will not change
that, or the conditional distribution of Xg given its parents. Doing causal
inference for other choices of X will demand other conditional independence
relations implied by the Markov property.

3 Conditional Independence and d-Separation

It is clearly very important to us to be able to deduce when two sets of variables
are conditionally independent of each other given a third. One of the great
uses of DAGs is that they give us a fairly simple criterion for this, in terms
of the graph itself. All distributions which conform to a given DAG share
a common set of conditional independence relations, implied by the Markov

4Especially in economics.
5Economists are also fond of the horribly misleading usage of talking about “an X effect”
or “the effect of X” when they mean the regression coefficient of X. Don’t do this.



] D

R DR

Figure 2: Four DAGs for three linked variables. The first two (a and b) are
called chains; c is a fork; d is a collider. If these were the whole of the graph,
we would have X Y and X LY|Z. For the collider, however, we would have
XY while X LY |Z.

property, no matter what their parameters or the form of the distributions.
Faithful distributions have no other conditional independence relations. Let us
think this through.

Our starting point is that while causal influence flows one way through
the graph, along the directions of arrows from parents to children, statistical
information can flow in either direction. We can certainly make inferences about
an effect from its causes, but we can equally make inferences about causes from
their effects. It might be harder to actually do the calculationsﬂ and we might
be left with more uncertainty, but we could do it.

While we can do inference in either direction across any one edge, we do have
to worry about whether we can propagate this information further. Consider
the four graphs in Figure[2| In every case, we condition on X, which acts as the
source of information. In the first three cases, we can (in general) propagate
the information from X to Z to Y — the Markov property tells us that Y is
independent of its non-descendants given its parents, but in none of those cases
does that make X and Y independent. In the last graph, however, what’s called
a collidelﬂ7 we cannot propagate the information, because Y has no parents,
and X is not its descendant, hence they are independent. We learn about Z
from X, but this doesn’t tell us anything about Z’s other cause, Y.

All of this flips around when we condition on the intermediate variable (Z
in Figure [2)). The chains (Figures 2 and b), conditioning on the intermediate
variable blocks the flow of information from X to Y — we learn nothing more
about Y from X and Z than from Z alone, at least not along this path. This is
also true of the fork (Figure ) — conditional on their common cause, the two
effects are uninformative about each other. But in a collider, conditioning on

6Janzing| (2007) makes the very interesting suggestion that the direction of causality can
be discovered by using this — roughly speaking, that if X|Y is much harder to compute than
is Y| X, we should presume that X — Y rather than the other way around.

"Because two incoming arrows “collide” there.



the common effect Z makes X and Y dependent on each other, as we've seen
before. In fact, if we don’t condition on Z, but do condition on a descendant of
Z, we also create dependence between Z’s parents.

We are now in a position to work out conditional independence relations.
We pick our two favorite variables, X and Y, and condition them both on some
third set of variables S. If S blocks every undirected pat}EI from X to Y, then
they must be conditionally independent given S. An unblocked path is also
called active. A path is active when every variable along the path is active;
if even one variable is blocked by S, the whole path is blocked. A variable Z
along a path is active, conditioning on S, if

1. Z is a collider along the path, and in S; or,
2. Z is a descendant of a collider, and in S; or
3. Z is not a collider, and not in S.
Turned around, Z is blocked or de-activated by conditioning on S if
1. Z is a non-collider and in S; or
2. Z is collider, and neither Z nor any of its descendants is in S

In words, S blocks a path when it blocks the flow of information by condi-
tioning on the middle node in a chain or fork, and doesn’t create dependence by
conditioning on the middle node in a collider (or the descendant of a collider).
Only one node in a path must be blocked to block the whole path. When
S blocks all the paths between X and Y, we say it d-separates thenﬂ A
collection of variables U is d-separated from another collection V' by S if every
X eU and Y € V are d-separated.

In every distribution which obeys the Markov property, d-separation im-
plies conditional independence. If the distribution is also faithful to the graph,
then conditional independence also implies d-separatiorﬂ In a faithful causal
graphical model, then, conditional independence is exactly the same as blocking
the flow of information across the graph. This turns out to be the single most
important fact enabling causal inference; we will see how that works next time.

3.1 D-Separation Illustrated

The discussion of d-separation has been rather abstract, and perhaps confusing
for that reason. Figure [3]shows a DAG which might make this clearer and more
concrete.

If we make the conditioning set S the empty set, that is, we condition on
nothing, we “block” paths which pass through colliders. For instance, there

8Whenever I talk about undirected paths, I mean paths without cycles.

9The “d” stands for “directed”

10We will not prove this, though I hope I have made it plausible. You can find demonstra-
tions in |Spirtes et al.|(2001); [Pearl| (2000); |Lauritzen| (1996)).
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Figure 3: Example DAG used to illustrate d-separation.



are three exogenous variables in the graph, Xs, X3 and X5. Because they have
no parents, and path from one to another must go over a collideIE If we do
not condition on anything, therefore, we find that the exogenous variables are
d-separated and thus independent. Since X3 is not on any path linking X, and
X, if we condition only on X3, X, and Xj5 are still d-separated, so XL X5 X3.
There are two paths linking X3 to X5: X3 — X; « X5 — X, «— X5, and
X5 — X1 — Y < X;. Conditioning on X5 blocks the first path (since X5 is
part of it, but is a fork), and also blocks the second path (since X5 is not part
of it, and Y is a blocked collider). Thus, X31LX5|Xs. Similarly?} X531l X5|X.

For a slightly more interesting example, let’s look at the relation between
X3 and Y. There are two paths here: X3 — X7 — Y, and X3 — X; « X5 —
Xy «— X5 — Y. If we condition on nothing, the first path, which is a simple
chain, is open, so X3 and Y are d-connected and dependent. If we condition
on X7, we block the first path. But X; is a collider on the second path, so
conditioning on it activates the path. We have blocked the causal pathway, but
we have created a channel for inference. So we have

vy AL X3 (1)
v oL XX, (2)
To block the second path, it would be enough to condition on X; and X5 (since

conditioning on a fork blocks it), or X7 and X5 (ditto), or, in fact, any super-set
of these. So

Y 1 XXy, Xo (3)
Y A X5X1, X5 (4)
Y AL X3|Xp, X5, X5 (5)
Y L X30Xy, X, Xy (6)
Y L X30Xy, Xy, Xe (7)
Yy A X3X, X0, X5, X (8)

etc., etc.

Let’s look at the relationship between X4 and Y. X, is not an ancestor
of Y, or a descendant of it, but they do share common ancestors, X5 and
X5. Unconditionally, ¥ and X, are dependent, both through the path going
Xy «— X5 — Y, and through that going X4y «— Xo — X; — Y. Along both
paths, the exogenous variables are forks, so not conditioning on them leaves the
path unblocked. X4 and Y become d-separated when we condition on X5 and
X,

X and X3 have no common ancestors. Unconditionally, they should be
independent, and indeed they are: the two paths are Xg < X4 +— Xo — X7 «—
X3, and Xg «— Xy «— X5 — Y « X; «— Xj3. Both paths contain a single

11 EXERCISE: Convince yourself of this for this graph by finding all the paths between the
exogenous variables. Can you prove this as a general fact about DAGs?
12EXERCISE!



collider (X7 and Y, respectively), so if we do not condition on them the paths
are blocked and Xg and X3 are independent. If we condition on either Y or X
(or both), however, we unblock the paths, and X and X3 become d-connected,
hence dependent. To get back to d-separation while conditioning on Y, we must
also condition on X4 or X5, or both. To get d-separation while conditioning on
X1, we must also condition on Xy, or on X5, or on X4 and X5. If we condition
on both X; and Y and want d-separation, we could just add conditioning on
X4, or we could condition on X5 and X5, or all three.

If the abstract variables are insufficiently concrete, consider reading them as
follows:

Y < Grade in 402
X, < Effort spent on 402
X5 &  Enjoyment of statistics
X3 <<  Workload this semester
X, < Quality of work in 401
X5 <  Amount learned in 401
Xs <  Grade in 401

Pretending, for the sake of illustration, that this is accurate, how heavy your
workload is this semester (X3) would predict, or rather retrodict, your grade
in modern regression last semester (Xg), once we control for how much effort
you put into data analysis this semester (X;). Changing your workload this
semester would not, however, reach backwards in time to raise or lower your
grade in regression.

3.2 Linear Graphical Models and Path Coefficients

We began our discussion of graphical models with factor analysis as our starting
point. Factor models are a special case of linear (directed) graphical models,
a.k.a. path modelﬂ As with factor models, in the larger class we typically
center all the variables (so they have expectation zero) and scale them (so they
have variance 1). In factor models, the variables were split into two sets, the
factors and the observables, and all the arrows went from factors to observables.
In the more general case, we do not necessarily have this distinction, but we still
assume the arrows from a directed acyclic graph. The conditional expectation
of each variable is a linear combination of the values of its parents:

E [Xi|Xparents(i)] = Z wjin

jEparents()

just as in a factor model. In a factor model, the coefficients w;; were the factor
loadings. More generally, they are called path coefficients.

The path coefficients determine all of the correlations between variables in
the model. To find the correlation between X; and X;, we proceed as follows:

13Some people use the phrase “structural equation models” for such models exclusively.



e Find all of the undirected paths between X; and Xj.

e Discard all of the paths which go through colliders.

e For each remaining path, multiply all the path coefficients along the path.
e Sum up these products over paths.

These rules were introduced by the great geneticist and mathematical biologist
Sewall Wright in the early 20th century, in a series of papers culminating in
Wright (1934)|E| These “Wright path rules” often seem mysterious, particularly
the bit where paths with colliders are thrown out. But from our perspective, we
can see that what Wright is doing is finding all of the unblocked paths between
X, and X;. Each path is a channel along which information (here, correlation)
can flow, and so we add across channels.

It is frequent, and customary, to assume that all of the variables are Gaus-
sian. (We saw this in factor models as well.) With this extra assumption, the
joint distribution of all the variables is a multivariate Gaussian, and the cor-
relation matrix (which we find from the path coefficients) gives us the joint
distribution.

If we want to find conditional correlations, corr(X;, X;| X, Xi,...), we still
sum up over the unblocked paths. If we have avoided conditioning on colliders,
then this is just a matter of dropping the now-blocked paths from the sum. If on
the other hand we have conditioned on a collider, that path does become active
(unless blocked elsewhere), and we in fact need to modify the path weights.
Specifically, we need to work out the correlation induced between the two parents
of the collider, by conditioning on that collider. This can be calculated from
the path weights, and some fairly tedious algebrﬂ The important thing is to
remember that the rule of d-separation still applies, and that conditioning on a
collider can create correlations.

3.3 Positive and Negative Associations

We say that variables X and Y are positively associated if increasing X
predicts, on average, an increase in Y, and vice Versalﬂ if increasing X predicts
a decrease in Y, then they are negatively associated. If this holds when
conditioning out other variables, we talk about positive and negative partial
associations. Heuristically, positive association means positive correlation in the
neighborhood of any given x, though the magnitude of the positive correlation
need not be constant. Note that not all dependent variables have to have a
definite sign for their association.

We can multiply together the signs of positive and negative partial associa-
tions along a path in a graphical model, the same we can multiply together path

14That paper is now freely available online, and worth reading. See also http://www.ssc.
wisc.edu/soc/class/soc952/Wright/wright_biblio.htm for references to, and in some cases
copies of, related papers by Wright.

158ee for instance |Li et al.|(1975).

16Le., if EIX=2T5
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coefficients in a linear graphical model. Paths which contain colliders should be
neglected. If all the paths connecting X and Y have the same sign, then we
know that over-all association between X and Y must have that sign. If differ-
ent paths have different signs, however, then signs alone are not enough to tell
us about the over-all association.

If we are interested in conditional associations, we have to consider whether
our conditioning variables block paths or not. Paths which are blocked by con-
ditioning should be dropped from consideration. If a path contains an activated
collider, we need to include it, but we reverse the sign of one arrow into the
collider. That is, if X Lzt Y, and we condition on Z, we need to replace
one of the plus signs with a — sign, because the two parents now have an over-all
negative associationﬂ If on the other hand one of the incoming arrows had a
positive association and the other was negative, we need to flip one of them so
they are both positive or both negative; it doesn’t matter which, since it creates
a positive association between the parentﬂ

4 Further Reading

The two foundational books on graphical causal models are |Spirtes et al.[(2001)
and [Pearl| (2009b)). Both are excellent and recommended in the strongest pos-
sible terms; but if you had to read just one, I would recommend [Spirtes et al.
(2001)). If on the other hand you do not feel up to reading a book at all, then
Pearl| (20094) is much shorter, and covers most of the high points. (Also, it’s free
online.) The textbook by [Morgan and Winship| (2007) is much less demanding
mathematically, which also means it is less complete conceptually, but it does
explain the crucial ideas clearly, simply, and with abundant examplesE Lau-
ritzen| (1996 has a mathematically rigorous treatment of d-separation (among
many other things), but de-emphasizes causality.

Linear path models have a very large literature, going back to the early 20th
century. |Loehlin| (1992) is user-friendly, though aimed at psychologists with less
mathematical sophistication than students taking this course. |Li (1975)), while
older, is very enthusiastic and has many interesting applications. Many software
packages for linear structural equation models and path analysis offer options
to search for models; these are not, in general, reliable (Spirtes et al., |2001)).

17If both smoking and asbestos are positively associated with lung cancer, and we know the
patient does not have lung cancer, then high levels of smoking must be compensated for by
low levels of asbestos, and vice versa.

181f yellow teeth are positively associated with smoking and negatively associated with
dental insurance, and we know the patient does not have yellow teeth, then high levels of
smoking must be compensated for by excellent dental care, and conversely poor dental care
must be compensated for by low levels of smoking.

19This textbook also discusses an alternative formalism for counterfactuals, due to Donald
Rubin. While Rubin has done very distinguished work in causal inference, his formalism is
vastly harder to manipulate than are graphical models, but has no more expressive power.
(Pearl| (2009a)) has a convincing discussion of this point.) I have accordingly skipped the Rubin
formalism here, but good accounts are available in Morgan and Winship| (2007} ch. 2), and in
Rubin’s collected papers (Rubinl [2006).
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On information theory (in the appendix), the best book is|Cover and Thomas
(2006)) by a large margin.

A Independence, Conditional Independence, and
Information Theory

Take two random variables, X and Y. They have some joint distribution, which
we can write p(z,y). (If they are both discrete, this is the joint probability
mass function; if they are both continuous, this is the joint probability density
function; if one is discrete and the other is continuous, there’s still a distribution,
but it needs more advanced tools.) X and Y each have marginal distributions
as well, p(x) and p(y). XILY if and only if the joint distribution is the product
of the marginals:

XY < p(z,y) = p(x)p(y)

We can use this observation to measure how dependent X and Y are. Let’s start
with the log-likelihood ratio between the joint distribution and the product of
marginals:

p(z,y)
p(z)p(y)

This will always be exactly 0 when XALY. We use its average value as our
measure of dependence:

log

1Y) = Y- plo.y)log B

(If the variables are continuous, replace the sum with an integral.) Clearly,
if X1y, then I[X;Y] = 0. One can show| that I[X;Y] > 0, and that
I1X;Y] = 0 implies X-LY. The quantity I[X;Y] is symmetric between X
and Y, and moreover I[X;Y] = I[f(X);g(Y)] whenever f and g are invertible
functions. This coordinate-freedom means that I[X;Y] measures all forms
of dependence, not just linear relationships, like the ordinary (Pearson) correla-
tion coefficient, or monotone dependence, like the rank (Spearman) correlation
coefficient. In information theory, I[X;Y] is called the mutual information,
or Shannon information, between X and Y. So we have the very natural
statement that random variables are independent just when they have no infor-
mation about each other.

There are (at least) two ways of giving an operational meaning to I[X;Y].
One, the original use of the notion, has to do with using knowledge of Y to
improve the efficiency with which X can be encoded into bits (Shannon, [1948;
Cover and Thomas|, [2006). While this is very important — it’s literally trans-
formed the world since 1945 — it’s not very statistical. For statisticians, what

20Using the same type of convexity argument (“Jensen’s inequality”) we used in Lecture 19
for understanding the details of the EM algorithm.
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matters is that if we test the hypothesis that X and Y are independent, with
joint distribution p(x)p(y), against the hypothesis that they dependent, with
joint distribution p(x,y), then our power to detect dependence grows exponen-
tially with the number of samples, and the exponential rate at which it grows
is I1X;Y]. More exactly, if 3, is the error probability with n samples,

1
——log B, — I[X;Y]
n

(See |Cover and Thomas| (2006) again, or [Kullbackl (1968]).) So positive mutual
information means dependence, and the magnitude of mutual information tells
us about how detectable the dependence is.

Suppose we conditioned X and Y on a third variable (or variables) Z. For
each realization z, we can calculate the mutual information,

IX:Y|Z = 2] =) pla,y|z)log m

And we can average over z,

IX;Y(2) =) p(2)[X;Y|Z = 2]

This is the conditional mutual information. It will not surprise you at this
point to learn that X1LY|Z if and only if I[X;Y|Z] = 0. The magnitude of
the conditional mutual information tells us how easy it is to detect conditional
dependence.
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