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There are two problems which are both known as “causal inference”:

1. Given the causal structure of a system, estimate the effects the variables
have on each other.

2. Given data about a system, find its causal structure.

The first problem is easier, so we’ll begin with it.



Probabilistic conditioning Causal conditioning

Pr(Y|X =x) Pr (Y|do(X = x))

Factual Counter-factual

Select a sub-population Generate a new population

Predicts passive observation Predicts active manipulation
Calculate from full DAG Calculate from surgically-altered DAG
Always identifiable when X and Y | Not always identifiable even

are observable when X and Y are observable

Table 1: Contrasts between ordinary probabilistic conditioning and causal con-
ditioning. (See below on identifiability.)

1 Causal Effects, Interventions and Experiments
As a reminder, when I talk about the causal effect of X on Y, which I write
Pr (Y|do(X = x)) (1)

I mean the distribution of Y which would be generated, counterfactually, were
X to be set to the particular value x. This is not, in general, the same as the
ordinary conditional distribution

Pr(Y|X =x) (2)

The reason is that the latter represents taking the original population, as it
is, and just filtering it to get the sub-population where X = z. The processes
which set X to that value may also have influenced Y through other channels,
and so this distribution will not, typically, really tell us what would happen if
we reached in and manipulated X. We can sum up the contrast in a little table
(Table . As we saw two lectures ago, if we have the full graph for a directed
acyclic graphical model, it tells us how to calculate the joint distribution of
all the variables, from which of course the conditional distribution of any one
variable given another follows. As we saw in the last lecture, calculations of
Pr (Y|do(X = z)) use a “surgically altered” graph, in which all arrows into X
are deleted, and its value is pinned at x, but the rest of the graph is as before.
If we know the DAG, and we know the distribution of each variable given its
parents, we can calculate any causal effect we want, by graph-surgery.



1.1 The Special Role of Experiment

If we want to estimate Pr (Y |do(X = x)), the most reliable procedure is also
the simplest: actually manipulate X to the value x, and see what happens to
Y. (As my mother says, “Why think, when you can just do the experiment?”)
A causal or counter-factual assumption is still required here, which is that the
next time we repeat the manipulation, the system will respond similarly, but
this is pretty weak as such assumptions go.

While this seems like obvious common sense to us now, it is worth taking
a moment to reflect on the fact that systematic experimentation is a very re-
cent thing; it only goes back to around 1600. Since then, the knowledge we
have acquired by combining experiments with mathematical theories have to-
tally transformed human life, but for the first four or five thousand years of
civilization, people much smarter than (almost?) any scientist now alive would
have dismissed experiment as something fit only for cooks and blacksmiths, who
didn’t really know what they were doing.

The major obstacle the experimentalist must navigate around is to make sure
they the experiment they are doing is the one they think they are doing. Symbol-
ically, when we want to know Pr (Y|do(X = z)), we need to make sure that we
are only manipulating X, and not accidentally doing Pr (Y|do(X =), Z = 2)
(because we are only experimenting on a sub-population), or Pr (Y|do(X = z,Z = z))
(because we are also, inadvertently, manipulating Z). There are two big main
divisions about how to avoid these confusions.

1. The older strategy is to deliberately control or manipulate as many other
variables as possible. If we find Pr (Y|do(X =z, Z = z)) and Pr (Y|do(X = 2/, Z = 2))
then we know the differences between them are indeed just due to chang-
ing X. This strategy, of actually controlling or manipulating whatever we
can, is the traditional one in the physical sciences, and more or less goes
back to Galileo and the beginning of the Scientific Revolutiorﬂ

2. The younger strategy is to randomize over all the other variables but
X. That is, to examine the contrast between Pr(Y|do(X = z)) and
Pr (Y|do(X = 2’)), we use an independent source of random noise to de-
cide which experimental subjects will get do(X = z) and which will get
do(X = ’). Tt is easy to convince yourself that this makes Pr (Y|do(X = z))
equal to Pr(Y|X =z). The great advantage of the randomization ap-
proach is that we can apply it even when we cannot actually control the
other causally relevant variables, or even are unsure of what they are.
Unsurprisingly, it has its origins in the biological sciences, especially agri-
culture. If we want to credit its invention to a single culture hero, it would
not be too misleading to attribute it to R. A. Fisher.

Experimental evidence is compelling, but experiments are often slow, ex-
pensive, and difficult. Moreover, experimenting on people is hard, both because

IThe anguished sound you hear as you read this is every historian of science wailing in
protest as the over-simplification, but this will do as an origin myth for our purposes.



there are many experiments we shouldn’t do, and because there are many exper-
iments which would just be too hard to organize. We must therefore consider
how to do causal inference from non-experimental, observational data.



2 Identification and Confounding

For today’s purposes, the most important distinction between probabilistic and
causal conditioning has to do with the identification (or identifiability), of
the conditional distributions. An aspect of a statistical model is identifiable
when it cannot be changed without there also being some change in the dis-
tribution of the observable variables. If we can alter part of a model with no
observable consequences, that part of the model is unidentiﬁableﬂ Sometimes
the lack of identification is trivial: in a two-component mixture model, we get
the same observable distribution if we swap the labels of the two component
distributions. The rotation problem for factor models is a less trivial identi-
fication problenﬁ If two variables are co-linear, then their coefficients in a
linear regression are unidentiﬁableﬂ Note that identification is about the true
distribution, not about what happens with finite data. A parameter might be
identifiable, but we could have so little information about it in our data that our
estimates are unusable, with immense confidence intervals; that’s unfortunate,
but we just need more data. An unidentifiable parameter, however, cannot be
estimated even with infinite data[]

When X and Y are both observable variables, Pr (Y| X = z) can’t help being
identifiable. (Changing this just is changing part of the distribution of observ-
ables.) Things are very different, however, for Pr (Y|do(X = z)). In some mod-
els, it’s entirely possible to change this drastically, and always have the same
distribution of observables, by making compensating changes to other parts of
the model. When this is the case, we simply cannot estimate causal effects from
observational data. The basic problem is illustrated in Figure

In Figure [I} X is a parent of Y. But if we analyze the dependence of Y on
X, say in the form of the conditional distribution Pr(Y|X = z), we see that
there are two channels by which information flows from cause to effect. One
is the direct, causal path, represented by Pr (Y |do(X = x)). The other is the
indirect path, where X gives information about its parent U, and U gives in-
formation about its child Y. If we just observe X and Y, we cannot separate
the causal effect from the indirect inference. The causal effect is confounded
with the indirect inference. More generally, the effect of X on Y is confounded
whenever Pr(Y|do(X =z)) # Pr(Y|X ==z). If there is some way to write
Pr (Y|do(X = x)) in terms of distributions of observables, we say that the con-
founding can be removed by an adjustment, or an identification strategy,

2More strictly, say that the model has two parameters, # and . The distinction between
01 and 62 is identifiable if, for all i1, 12, the distribution over observables coming from
(01,v1) is different from that coming from (62,%2). If the right choice of 11 and 12 masks
the distinction between 61 and 62, then 6 is unidentifiable.

3 As this example suggests, what is identifiable depends on what is observed. If we could
observe the factors directly, factor loadings would be identifiable.

4 As that example suggests, whether one aspect of a model is identifiable or not can depend
on other aspects of the model. If the co-linearity was broken, the two regression coefficients
would become identifiable.

5For more on identifiability, and what to do with unidentifiable problems, see the great
book by Manskil (2007).



Figure 1: The distribution of Y given X, Pr (Y| X), confounds the actual causal
effect of X on Y, Pr(Y|do(X = z)), with the indirect dependence between X
and Y created by their unobserved common cause U. (You may imagine that
U is really more than one variable, with some internal sub-graph.)

which de-confounds the effect. If there is no way to de-confound, then this
causal effect is unidentifiable.

The effect of X on Y in Figure[I]is unidentifiable; we could remove the arrow
from X to Y altogether, and still obtain any joint distribution for X and Y we
like by picking P(X|U), P(Y|U) and P(U) appropriately. So we cannot even,
in this situation, use observations to tell whether X is actually a cause of Y.
Notice, however, that even if U was observed, it would still not be the case that
Pr(Y|X =z) = Pr(Y|do(X = z)). While the effect would be identifiable (via
the back door criterion; see below), we would still need some sort of adjustment
to recover it.

In the next section, we will look at such adjustments and identification strate-
gies.



3 Identification Strategies

To recap, we want to calculate the causal effect of X on Y, Pr (Y|do(X = z)),
but we cannot do an actual experiment, and must rely on observations. In
addition to X and Y, there will generally be some covariates Z which we
know, and we’ll assume we know the causal graph, which is a DAG. Is this
enough to determine Pr(Y|do(X = z))? That is, does the joint distribution
identify the causal effect?

The answer is “yes” when the covariates Z contain all the other relevant
variable&ﬁ The inferential problem is then no worse than any other statistical
estimation problem. In fact, if we know the causal graph and get to observe all
the variables, then we could (in principle) just use our favorite non-parametric
conditional density estimate at each node in the graph, with its parent variables
as the inputs and its own variable as the response. Multiplying conditional
distributions together gives the whole distribution of the graph, and we can get
any causal effects we want by surgery. Equivalently (EXERCISE), we have that

Pr(Y|do(X =) =» Pr(Y|X =x,Pa(X) =t)Pr(Pa(X) =t) (3)

where Pa(X) is the complete set of parents of X.

If we're willing to assume more, we can get away with just using non-
parametric regression or even just an additive model at each node. Assuming
yet more, we could use parametric models at each node; the linear-Gaussian
assumption is (alas) very popular.

If some variables are not observed, then the issue of which causal effects are
observationally identifiable is considerably trickier. Apparently subtle changes
in which variables are available to us and used can have profound consequences.

The basic principle underlying all considerations is that we would like to
condition on adequate control variables, which will block paths linking X and
Y other than those which would exist in the surgically-altered graph where all
paths into X have been removed. If other unblocked paths exist, then there is
some confounding of the causal effect of X on Y with their mutual dependence
on other variables.

This is familiar to use from regression as the basic idea behind using ad-
ditional variables in our regression, where the idea is that by introducing co-
variates, we “control for” other effects, until the regression coefficient for our
favorite variable represents only its causal effect. Leaving aside the inadequacies
of linear regression as such (that’s what we spent the first third of the class on),

6This condition is sometimes known as causal sufficiency. Strictly speaking, we do not
have to suppose that all causes are included in the model and observable. What we have to
assume is that all of the remaining causes have such an unsystematic relationship to the ones
included in the DAG that they can be modeled as noise. (This does not mean that the noise is
necessarily small.) In fact, what we really have to assume is that the relationships between the
causes omitted from the DAG and those included is so intricate and convoluted that it might
as well be noise, along the lines of algorithmic information theory (Li and Vitanyi, |1997),
whose key result might be summed up as “Any determinism distinguishable from randomness
is insufficiently complex”. But here we verge on philosophy.



Figure 2: “Controlling for” additional variables can introduce bias into esti-
mates of causal effects. Here the effect of X on Y is directly identifiable,
Pr (Y|do(X = z)) =Pr(Y|X = z). If we also condition on Z however, because
it is a common effectof X and Y, we'd get Pr (Y| X =2,Z = 2) # Pr (Y| X = x).
In fact, even if there were no arrow from X to Y, conditioning on Z would make
Y depend on X.

we need to be cautious here. Just conditioning on everything possible does not
give us adequate control, or even necessarily bring us closer to it. As Figure
illustrates, and as Homework 11 will drive home, adding an ill-chosen covariate
to a regression can create confounding.

There are three main ways we can find adequate controls, and so get both
identifiability and appropriate adjustments:

1. We can condition on an intelligently-chosen set of covariates .S, which
block all the indirect paths from X to Y, but leave all the direct paths
open. (That is, we can follow the regression strategy, but do it right.)
To see whether a candidate set of controls S is adequate, we apply the
back-door criterion.

2. We can find a set of variables M which mediate the causal influence of
X on Y — all of the direct paths from X to Y pass through M. If we can
identify the effect of M on Y, and of X on M, then we can combine these
to get the effect of X on Y. (That is, we can just study the mechanisms by
which X influences Y.) The test for whether we can do this combination
is the front-door criterion.

3. We can find a variable I which affects X, and which only affects Y by
influencing X. If we can identify the effect of I on Y, and of I on X, then
we can, sometimes, “factor” them to get the effect of X on Y. (That is, I
gives us variation in X which is independent of the common causes of X
and Y.) I is then an instrumental variable for the effect of X on Y.

Let’s look at these three in turn.
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Figure 3: Illustration of the back-door criterion for identifying the causal effect
of X on Y. Setting S = {S1, 52} satisfies the criterion, but neither S; nor Sy
on their own would. Setting S = {Ss3}, or S = {51, 52,53} also works. Adding
B to any of the good sets makes them fail the criterion.

3.1 The Back-Door Criterion: Identification by Condi-
tioning

When estimating the effect of X on Y, a back-door path is an undirected
path between X and Y with an arrow into X. These are the paths which
create confounding, by providing an indirect, non-causal channel along which
information can flow. A set of conditioning variables or controls S satisfies the
back-door criterion when (i) S blocks every back-door path between X and
Y, and (ii) no node in S is a descendant of X. (Cf. Figure[3]) When S meets
the back-door criterion,

Pr(Y|do(X =2)) =Y Pr(Y|X =x,8=s)Pr(S=s) (4)

Notice that all the items on the right-hand side are observational conditional
probabilities, not counterfactuals. Thus we have achieved identifiability, as well
as having an adjustment strategy.

The motive for (i) is plain, but what about (ii)? We don’t want to include
descendants of X which are also ancestors of Y, because that blocks off some of
the causal paths from X to Y, and we don’t want to include descendants of X
which are also descendants of Y, because they provide non-causal information

about Y{

More formally, we can proceed as follows (Pearl, 2009b, §11.3.3). We know

"What about descendants of X which are neither ancestors nor descendants of Y? Condi-
tioning on them is either creates potential colliders, if they are also descended from ancestors
of Y other than X, or needlessly complicates the adjustment in Eq.



from Eq. [3] that

Pr (Y|do(X =z)) = ZPr (Pa(X) =t)Pr(Y|X =z,Pa(X) =1) (5)

Now suppose we can always introduce another set of conditioned variables, if
we sum out over them:

Pr(Y|do(X =) =Y Pr(Pa(X)=1t)» Pr(Y,S=s|X =z,Pa(X) =1t)
t s
(6)
We can do this for any set of variables S, it’s just probability. It’s also just
probability that

Pr(Y,S|X =z,Pa(X) =t) = (7)
Pr(Y|X =z,Pa(X) =1,5 =s)Pr (S = s|X = z,Pa(X) =)

SO

Pr(Y|do(X =x)) = (8)
> Pr(Pa(X)=1)Y Pr(Y|X =z,Pa(X) =18 =s)Pr(S=s|X =z,Pa(X) =1)

Now we invoke the fact that S satisfies the back-door criterion. Point (i) of the
criterion, blocking back-door paths, implies that Y1LPa(X)|X,S. Thus
Pr(Y|do(X = z)) = (9)
D Pr(Pa(X)=1)Y Pr(Y[X =x,8=s)Pr(S=sX =xPa(X)=1t)
t s
Point (ii) of the criterion, not containing descendants of X, means (by the
Markov property) that X-LS|Pa(X). Therefore
Pr(Y|do(X = z)) = (10)
> Pr(Pa(X)=1)> Pr(Y|X =z,8=s)Pr(S=s[Pa(X) =t)
t s
Since ), Pr(Pa(X) =t) Pr (S = s|Pa(X) = t) = Pr (S = s), we have, at last,

Pr(Y|do(X =2)) =Y Pr(Y|X =x,8=s)Pr(S=s) (11)

as promised. [J
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3.2 The Front-Door Criterion: Identification by Mecha-
nisms

A set of variables M satisfies the front-door criterion when (i) M blocks all
directed paths from X to Y, (ii) there are no unblocked back-door paths from
X to M, and (iii) X blocks all back-door paths from M to Y. Then

Pr(Y|do(X = x)) = (12)
S Pr(M=m|X=x)) Pr(Y|X =2/,M=m)Pr(X =2')

A natural reaction to the front-door criterion is “Say what?”, but it becomes
more comprehensible if we take it apart. Because, by clause (i), M blocks all
directed paths from X to Y, any causal dependence of Y on X must be mediated
by a dependence of Y on M:

Pr (Y|do(X =z)) = ZPr (Yldo(M =m))Pr (M =m|do(X =x))  (13)

Clause (ii) says that we can get the effect of X on M directly,
Pr(M =m|do(X =z))=Pr(M =m|X ==z) . (14)

Clause (iii) say that X satisfies the back-door criterion for identifying the effect
of M on Y, and the inner sum in Eq. [12|is just the back-door computation (Eq.
of Pr (Y|do(M = m)). So really we are using the back door criterion, twice.

(See Figure [4])

3.2.1 The Front-Door Criterion and Mechanistic Explanation

Morgan and Winship| (2007, ch. 8) give a useful insight into the front-door
criterion. The each directed path from X to Y is, or can be thought of as,
a separate mechanism by which X influences Y. The requirement that all
such paths be blocked by M, (i), is the requirement that the set of mechanisms
included in M be “exhaustive”. The two back-door conditions, (ii) and (iii),
require that the mechanisms be “isolated”, not interfered with by the rest of the
data-generating process (at least once we condition on X'). Once we identify an
isolated and exhaustive set of mechanisms, we know all the ways in which X
actually affects Y, and any indirect paths can be discounted, using the front-
door adjustment

One interesting possibility suggested by this is to elaborate mechanisms into
sub-mechanisms, which could be used in some cases where the plain front-door
criterion won’t applyﬁ Figure Because U is a parent of M, we cannot use
the front-door criterion to identify the effect of X on Y. (Clause (i) holds, but
(ii) and (iii) both fail.) But we can use M; and the front-door criterion to find

8The ideas in this paragraph come from Prof. Winship, who I understand is currently
(April 2011) preparing a paper on this.
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Figure 4: Tllustration of the front-door criterion, after Pearl (2009b), Figure 3.5).
X, Y and M are all observed, but U is an unobserved common cause of both X
and Y. X «— U — Y is a back-door path confounding the effect of X on Y with
their common cause. However, all of the effect of X on Y is mediated through
X’s effect on M. M’s effect on Y is, in turn, confounded by the back-door
path M «— X «— U — Y, but X blocks this path. So we can use back-door
adjustment to find Pr (Y|do(M = m)), and directly find Pr (M|do(X = x)) =
Pr (M|X = z). Putting these together gives Pr (Y|do(X = x)).

Pr (M|do(X = z)), and we can use Ms to find Pr(Y|do(M = m)). Chaining
those together, as in Eq. would given Pr(Y|do(X = x)). So even though
the whole mechanism from X to Y is not isolated, we can still identify effects
by breaking it into sub-mechanisms which are isolated. This suggests a natural
point at which to stop refining our account of the mechanism into sub-sub-sub-
mechanisms.

12



Figure 5: The path X — M — Y contains all the mechanisms by which X
influences Y, but is not isolated from the rest of the system (U — M). The
sub-mechanisms X — M; — M and M — Ms — Y are isolated, and the
original causal effect can be identified by composing them.

13



Figure 6: A valid instrumental variable, I, is related to the cause of interest, X,
and influences Y only through its influence on X, at least once control variables
block other paths. Here, to use I as an instrument, we should condition on S,
but should not condition on B. (If we could condition on U, we would not need
to use an instrument.)

3.3 Instrumental Variables

A variable I is an instrumentﬂ for identifying the effect of X on Y when
there is a set of controls S such that (i) I ALX|S, and (ii) every unblocked
path from I to Y has an arrow pointing into to X. Another way to say (ii) is
that I1Y|S,do(X). Colloquially, I influences Y, but they are only dependent
through I first influencing X. (See Figure @)

How is this useful? By making back-door adjustments for S, we can identify
Pr (Y|do(I =i)) and Pr (X|do(I =1)). Since all the causal influence of I on Y
must be channeled through X (by point (ii)), we have

Pr(Y|do(I =i)) =Y Pr(Y|do(X = ))Pr(X = z|do(I =4))  (15)

as in Eq. We can thus identify the causal effect of X on Y whenever
Eq. can be solved for Pr(Y|do(X = z)) in terms of Pr(Y|do(I =1)) and
Pr (X|do(I = 1)).

Unfortunately, it is not possible to find a unique solution in general. In the
very special case where the dependence of X on I and of Y on X are both linear,

9The term “instrumental variables” comes from econometrics, where they were originally
used, in the 1940s, to identify parameters in simultaneous equation models. (The metaphor
was that I is a measuring instrument for the otherwise inaccessible parameters.) Definitions
of instrumental variables are surprisingly murky and controversial outside of extremely simple
linear systems; this one is taken from |Galles and Pearl| (1997), via [Pearl| (2009bl §7.4.5).
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we can. In this situation, we can write
X =060+ 01l +e¢ (16)

and
Y=9%+mX+n (17)

where € and 7 are mean-zero noise terms, but 7 is not independent of X. Sub-
stituting,

Y =0 +7080 + 7161 +vie+n (18)

Now calculate covariances:

cov [, X] = pyvar[I]+ covle I] (19)
cov[l,Y] = mifivar[l] + yicov e, I] + cov [n, I] (20)
= mcov I, X]+ covn,I] (21)

By condition (ii), however, we must have cov [, I] = 0. Therefore

cov [I,Y]

cov [, X] (22)

"=
This can be estimated by substituting in the sample covariances, or any other
consistent estimators of these two covariances.
On the other hand, the (true or population-level) coefficient for linearly
regressing Y on X is

cov[X,Y]  mvar [X]+ cov[n, X] cov [, X]

var [X] B var [X] =n+ var [X] (23)

That is, “OLS is biased for the causal effect when X is correlated with the noise”.
In other words, simple regression is misleading in the presence of confoundinﬂ

The instrumental variable I provides a source of variation in X which is
uncorrelated with the other common ancestors of X and Y. By seeing how
both X and Y respond to these perturbations, and using the fact that I only
influences Y through X, we can deduce something about how X influences Y,
though linearity is very important to our ability to do so.

3.3.1 Critique of Instrumental Variables

By this point, you may well be thinking that instrumental variable estimation is
very much like using the front-door criterion. There, the extra variable M came
between X and Y'; here, X comes between I and Y. It is, perhaps, surprising
(if not annoying) that using an instrument only lets us identify causal effects
under extra assumptions, but that’s life. Just as the front-door criterion rests on

10But observe that if we want to make a linear prediction of Y and only have X available,
i.e., to find the best r1 in E[Y|X =] = r¢ + r1z, then Eq. is ezactly the coefficient we
would want to use. OLS is doing its job.
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using our scientific knowledge, or rather theories, to find isolated and exhaustive
mechanisms, finding valid instruments would seem to rest a lot on theories about
the world (or the part of it under study), and one would want to try to check
those theories.

In fact, instrumental variable estimates of causal effects are often presented
as more or less unquestionable, and free of theoretical assumptions; economists,
and other social scientists influenced by them, are especially apt to do this. As
the economist Daniel Davies puts iﬂ devotees of this approach

have a really bad habit of saying:
“Whichever way you look at the numbers, X”.
when all they can really justify is:
“Whichever way I look at the numbers, X”.
but in fact, I should have said that they could only really support:
“Whichever way I look at these numbers, X”.

(Emphasis in the original.) It will not surprise you to learn that I think this is
very wrong.

I hope that, after four months of nonlinear models, if someone tries to sell you
a linear regression, you should be very skeptical, but let’s leave that to one side.
(It’s not impossible that everything really is linear.) The clue that instrumental
variable estimation is a creature of theoretical assumptions is point (ii) in the
definition of an instrument: ILY|S do(X). This says that if we eliminate all
the arrows into X, the control variables S block all the other paths between
I and Y. This is ezactly as much an assertion about mechanisms as what we
have to do with the front-door criterion. In fact it doesn’t just say that every
mechanism by which I influences Y is mediated by X, it also says that there
are no common causes of I and Y (other than those blocked by 5).

This assumption is most easily defended when I is genuinely random, For
instance, if we do a randomized experiment, I might be a coin-toss which assigns
each subject to be in either the treatment or control group, each with a different
value of X. If “compliance” is not perfect (if some of those in the treatment
group don’t actually get the treatment, or some in the control group do), it
is nonetheless plausible that the only route by which I influences the outcome
is through X, so an instrumental variable regression is appropriate. (I here is
sometimes called “intent to treat”.)

Even here, we must be careful. If we are evaluating a new medicine, whether
people think they are getting a medicine or not could change how they act, and
medical outcomes. Knowing whether they were assigned to the treatment or the
control group would thus create another path from I to Y, not going through X.
This is why randomized clinical trials are generally “double-blinded” (neither
patients nor medical personnel know who is in the control group); but how
effective the double-blinding is itself a theoretical assumption.

More generally, any argument that a candidate instrument is valid is really an
argument that other channels of influence, apart from the favored one through

In part four of his epic and insightful review of Freakonomics; see http://
d-squareddigest.blogspot.com/2007/09/freakiology-yes-folks-its-part-4-of .html.
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X, can be ruled out. This generally cannot be done through analyzing the
same variables used in the instrumental-variable estimation (see below), but
involves some theory about the world, and rests on the strength of the evidence
for that theory. As has been pointed out multiple times — for instance, by
Rosenzweig and Wolpin| (2000) — the theories needed to support instrumental
variable estimates in particular concrete cases are often not very well-supported,
and plausible rival theories can produce very different conclusions from the same
data.

Many people have thought that one can test for the validity of an instrument,
by looking at whether I1LY|X — the idea being that, if influence flows from I
through X to Y, conditioning on X should block the channel. The problem is
that, in the instrumental-variable set-up, X is a collider, so conditioning on X
actually creates an indirect dependence even if I is valid. So I )Y | X, whether
or not the instrument is valid, and the test (even if performed perfectly with
infinite data) tells us nothingiﬂ

A final, more or less technical, issue with instrumental variable estimation
is that many instruments are (even if valid) weak — they only have a little
influence on X, and a small covariance with it. This means that the denominator
in Eq. [22)is a number close to zero. Error in estimating the denominator, then,
results in a much larger error in estimating the ratio. Weak instruments lead
to noisy and imprecise estimates of causal effects. It is not hard to construct
scenarios where, at reasonable sample sizes, one is actually better off using the
biased OLS estimate than the unbiased but high-variance instrumental estimate.

2However, see [Pearl| (2009b, §8.4) for a different approach which can “screen out very bad
would-be instruments”.
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Figure 7: Social influence is confounded with selecting friends with similar traits,
unobserved in the data.

3.4 Failures of Identification

The back-door and front-door criteria, and instrumental variables, are all suffi-
cient for estimating causal effects from probabilistic distributions, but are not
necessary. Necessary and sufficient conditions for the identifiablity of causal ef-
fects are in principle possible but don’t have a nice snappy form (Pearl, |2009b}
§83.4-3.5). A necessary condition for un-identifiability, however, is the presence
of an unblockable back-door path from X to Y. However, this is not sufficient
for lack of identification — we might, for instance, be able to use the front door
criterion, as in Figure [4]

As an example of the unidentifiable case, consider Figure [7] This DAG
depicts the situation analyzed in |Christakis and Fowler| (2007)), a famous paper
claiming to show that obesity is contagious in social networks (or at least in the
town in Massachusetts where the data was collected). Each year, participants
in the study get their weight taken, and so their obesity status is known over
time. They also provide the name of a friend. This friend is often in the
study. Christakis and Fowler were interested in the possibility that obesity is
contagious, through some process of behavioral influence. If this is so, then
Irene’s obesity status in year 2 should depend on Joey’s obesity status in year
one, but only if Irene and Joey are friends — not if they are just random,
unconnected people. It is indeed the case that if Joey becomes obese, this
predicts a substantial increase in the odds of Joey’s friend Irene becoming obese,
even controlling for Irene’s previous history of obesityﬁ

The difficulty arises from the latent variables for Irene and Joey (the round

13The actual analysis was a bit more convoluted than that, but this is the general idea.
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nodes in Figure . These include all the traits of either person which (a) in-
fluence who they become friends with, and (b) influence whether or not they
become obese. A very partial list of these would include: taste for recreational
exercise, opportunity for recreational exercise, taste for alcohol, ability to con-
sume alcohol, tastes in food, occupation and how physically demanding it is,
ethnic backgrounc@, etc. Put simply, if Irene and Joey are friends because
they spend two hours in the same bar every day drinking and eating wings, it’s
less surprising that both of them have an elevated chance of becoming obese,
and likewise if they became friends because they both belong to the decath-
lete’s club, they are both unusually unlikely to become obese. Irene’s status is
predictable from Joey’s, then, not (or not just) because Joey influences Irene,
but because seeing what kind of person Irene’s friends are tells us about what
kind of person Irene is. It is not too hard to convince oneself that there is just
no way, in this DAG, to get at the causal effect of Joey’s behavior on Irene’s
that isn’t confounded with their latent traits (Shalizi and Thomas| 2011). To
de-confound, we would need to actual measure those latent traits, which may
not be impossible but is certainly was not done herﬂ

When identification is not possible — when we can’t de-confound — it may
still be possible to bound causal effects. That is, even if we can’t say exactly that
Pr (Y|do(X = z)) must be, we can still say it has to fall within a certain (non-
trivial!) range of possibilities. The development of bounds for non-identifiable
quantities, what’s sometimes called partial identification, is an active area
of research, which I think is very likely to become more and more important in
data analysis; the best introduction I know is [Manski| (2007)).

14 Friendships often run within ethnic communities. On the one hand, this means that friends
tend to be more genetically similar than random members of the same town, so they will be
usually apt to share genes which influence susceptibility to obesity (in that environment).
On the other hand, ethnic communities transmit, non-genetically, traditions regarding food,
alcohol, sports, exercise, etc., and (again non-genetically) influence employment opportunities.

150f course, the issue is not really about obesity. Studies of “viral marketing”, and of social
influence more broadly, all generically have the same problem. Predicting someone’s behavior
from that of their friend means conditioning on the existence of a social tie between them,
but that social tie is a collider, and activating the collider creates confounding.
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4 Matching and Propensity Scores

Suppose that our causal variable of interest X is binary, or (almost equivalent)
that we are only interested in comparing the effect of two levels, do(X = 1)
and do(X = x3). Let’s call these the “treatment” and “control” groups for
definiteness, though nothing really hinges on one of them being in any sense a
normal or default value (as “control” suggests). A common estimation strategy,
especially when what we are interested in is the difference between treated cases
and controls, is matching. For each treated case, we try to find a control case
which has similar values for the covariates 9% Taking the difference in Y
between the treated case and its matched control then gives an indication of
how much effect X has on the expected value of Y.

If the number of covariates is large, a sort of curse of dimensionality sets
in, and it can become extremely hard to find matches. A very clever idea, due
to [Rosenbaum and Rubin| (1983)), reduces the number of covariates we have to
match on to one dimension. This is what is called the propensity score, the
probability of being in the treated group as a function of the covariates:

p(s) = Pr (X = treatment|S = s) (24)

The trick is that this propensity score is a sufficient statistic for predicting
treatment status, in the sense that knowing the full covariates tells us no more
than just knowing p:

x1s|p (25)

Consequently, when we take a treated case, we can match it to a control case
with the same propensity score — one which was just as likely to receive treat-
ment, but, as it happens, did not.

If we are interested not just in the difference in expected Y’s, E [Y|do(X = z1)]—
E[Y|do(X = z2)], but the full causal effects, Pr (Y|do(X = x1)) and Pr (Y|do(X = z2)),
then we do not want to do matching. But if we could use S to do back-door ad-
justment, we can also use p, and doing so is apt to be computationally simpler,
and perhaps more stable.

There are two crucial issues to bear in mind while using propensity scores:
score computation, and causal adequacy.

Except in extremely unusual circumstances, we do not have an analytical
formula for p(s). This means that it must be modeled and estimated. The
most common model seems to be logistic regression, but so far as I can see
this is just for computational convenience. Since accurate propensity scores are
needed to make the method work, it would seem to be worthwhile to model p
very carefully.

The more important, and neglected, issue is that calculating a propensity
score doesn’t put any new information into S, it just summarizes what it has
to say about X. If S was an adequate control to prevent confounding, then so

161f no exact match is available, we might match to within some distance, or do some sort
of kernel-weighted matching. See, e.g., Morgan and Winship| (2007)) for details.
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is p. If, however, S leaves open back door paths, then so does p. Some confu-
sion seems to have arisen on this point, because, conditional on the propensity
score, the treated group and the control group have the same distribution of
covariates. (Recall that X-1L.S|p.) Since treatment and control groups have the
same distribution of covariates in a randomized experiment, some researchers
seem to have come to the conclusion that propensity score matching is just as
good as randomizatiorﬂ That this is emphatically not the case is shown by
applying matching methods to experimental data — see, for instance,
meaux et al| (2010)), where “matching suggests that [a] pre-election phone call
that encouraged people to wear their seat belts also generated huge increases in
voter turnout’]

17These people do not include Rubin and Rosenbaum, but it is easy to see how their readers

could come away with this impression. See (2009b} §11.3.5), and especially (2009a)).

18See the paper for a convincing explanation of where this illusory effect comes from.
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5 Summary

Of the four techniques I have introduced, instrumental variables are clever, but
fragile and over-solcﬂ matching and propensity scores are best thought of as
computational short-cuts. The back-door and front-door criteria are, I think,
the best approaches, when they can be made to work.

Often, nothing can be made to work. Many interesting causal effects are just
not identifiable from observational data. More exactly, they only become iden-
tifiable under very strong modeling assumptions, typically ones which cannot
be tested from the same data, and sometimes ones which cannot be tested by
any sort of empirical data whatsoever. Sometimes, we have good reasons (from
other parts of our scientific knowledge) to make such assumptions. Sometimes,
we make such assumptions because we have a pressing need for some basis on
which to act, and a wrong guess is better than nothinﬂ If you do make such
assumptions, you need to make clear that you are doing so, and what they are;
explain your reasons for making those assumptions, and not otherﬂ and indi-
cate how different your conclusions could be if you made different assumptions.

Throughout this lecture, we have been assuming that we know the correct
DAG. Without such assumptions, or ones equivalent to them, none of these
ideas can be used. In the next lecture, then, we will look at how to actually
begin discovering causal structure from data.

5.1 Further Reading
My presentation of the three major criteria is heavily indebted to [M

m m but I hope not a complete rip-off. [Pearl E (2009b)) is also essentlal

reading on this topic. m m provides an excellent critique of naive (that
is, overwhelmingly common) uses of regression for estimating causal effects.
collects Rubin’s major papers on matching, including propen-
sity score matching. Rubin and Waterman (2006) is an extremely clear easy-to-
follow introduction to propensity score matching as a method of causal inference.

Most econometrics texts devote considerable space to instrumental variables.
Didelez et al|(2010)) is a very good discussion of instrumental variable methods,
with less-standard applications. There is some work on non-parametric versions
of instrumental variables (e.g., Newey and Powell [2003)), but the form of the
models must be restricted or they are unidentifiable.

There is a large literature in the philosophy of science and in methodology on
the notion of “mechanisms”. References I have found useful include, in general,
Salmon)| (1984), and, specifically on social processes, [Elster| (1989), Hedstrom|
and Swedberg| (1998) (especially [Boudon|[1998)), [Hedstrom)| (2005)), [Tilly| (1984!
2008), and |DeLanda/ (2006).

197 confess that I would probably not be so down on them if others did not push them up
so excessively.

20 As T once heard a distinguished public health expert put it, “This problem is too important
to worry about getting it right.”

21“My boss/textbook says so” and “so I can estimate 3” are not good reasons
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6 Exercises
To think through, not to hand in.

1. Draw a graphical model representing the situation where a causal vari-
able X is set at random. Verify that Pr(Y|X = z) is then equal to
Pr (Y|do(X = x)). (Hint: Use the back door criterion.)

2. Prove Eq. 3| from the causal Markov property.

3. Refer to Figure 1 of Homework 10. Can we use the front door criterion to
estimate the effect of occupational prestige on cancer? If so, give a set S of
variables that we would adjust for in the front-door method. Is there more
than one such set? If so, can you find them all? Are there variables we
could add to this set (or sets) which would violate the front-door criterion?

4. Read |Salmon| (1984). When does his “statistical relevance basis” provide
enough information to identify causal effects?
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