Re-writing Your Code

36-402, Advanced Data Analysis

Based on discussion in lecture, 8 February 2011

Suppose we want to find a standard error for the median of a Gaussian
distribution. We know, somehow, that the mean of the Gaussian is 3, the
standard deviation is 2, and the sample size is one hundred. If we do

x <- rnorm(n=100,mean=3,sd=2)
we’ll get a draw from that distribution in x. If we do

x <- rnorm(n=100,mean=3,sd=2)
median (x)

we’ll calculate the median on one random draw. Following the general idea
of bootstrapping we can approximate the standard error of the median by re-
peating this many times and taking the standard deviation. We’ll do this by
explicitly iterating, so we need to set up a vector to store our intermediate
results first.

medians <- vector(length=100)
for (i in 1:100) {
x <- rnorm(n=100,mean=3,sd=2)
medians[i] <- median(x)
}

se.in.median <- sd(medians)

Well, how do we know that 100 replicates is enough to get a good approximation?
We’d need to run this a couple of times, typing it in or at least pasting it in
many times. Instead, we can write a function which just gives everything we’ve
done a single name. (I'll add comments as I go on.)

# Inputs: None; everything is hard-coded
# Output: the standard error in the median
find.se.in.median <- function() {

# Set up a vector to store the simulated medians

medians <- vector(length=100)

# Do the simulation 100 times

for (i in 1:100) {

x <- rnorm(n=100,mean=3,sd=2) # Simulate



medians[i] <- median(x) # Calculate the median of the simulation
}
se.in.median <- sd(medians) # Take standard deviation
return(se.in.median)

}

If we decide that 100 replicates isn’t enough and we want 1000, we need to
change this function. We could just change the first two appearances of “100”
to “1000”, but we have to catch all of them; we have to remember that the 100
in rnorm is there for a different reason and leave it alone; and if we later decide
that actually 500 replicates would be enough, we have to do everything all over
again.

It is easier, safer, clearer and more flexible to abstract a little and add an
argument to the function, which is the number of replicates. I'll add comments
as I go.

# Inputs: Number of bootstrap replicates B
# Output: the standard error in the median
find.se.in.median <- function(B) {
# Set up a vector to store the simulated medians
medians <- vector(length=B)
# Do the simulation B times
for (i in 1:B) {
x <- rnorm(n=100,mean=3,sd=2) # Simulate
medians[i] <- median(x) # Calculate median of the simulation
}
se.in.median <- sd(medians) # Take standard deviation
return(se.in.median)

Now suppose we want to find the standard error of the median for an ex-
ponential distribution with rate 2 and sample size 37. We could write another
function,

find.se.in.median.exp <- function(B) {
# Set up a vector to store the simulated medians
medians <- vector(length=B)
# Do the simulation B times
for (i in 1:B) {
x <- rexp(n=37,rate=2) # Simulate
medians[i] <- median(x) # Calculate median of the simulation
}
se.in.median <- sd(medians) # Take standard deviation
return(se.in.median)

}

but it is wasteful to define two functions which do almost the same job. It’s not
just inelegant; it invites mistakes, it’s harder to read (imagine coming back to



this in two weeks — was there a big reason why we had two separate functions
here?), and it’s harder to improve. We need to abstract a bit more.

We could put in some kind of switch which would simulate from either of
these two distributions, maybe like this:

# Inputs: number of replicates (B)
# flag for whether to use a normal or an exponential (use.norm)
# Output: The standard error in the median
find.se.in.median <- function(B,use.norm=TRUE) {
medians <- vector(length=B)
for (i in 1:B) {
if (use.norm) {
x <- rnorm(100,3,2)
} else {
x <- rexp(37,2)
}
medians[i] <- median(x)
}
se.in.median <- sd(medians)
return(se.in.median)

}

but why just these two? If we wanted any other distribution whatsoever, plainly
all we’d have to do is change how x is simulated. So we really want to be able
to give a simulator to the function as an argument.

Fortunately, in R you can give one function as an argument to another, so
we’d do something like this.

# Inputs: Number of replicates (B)
# Simulator function (simulator)
# Presumes: simulator is a no-argument function which produce a vector of
# numbers
# Output: The standard error in the media
find.se.in.median <- function(B,simulator) {
median <- vector(length=B)
for (i in 1:B) {
x <- simulator()
medians[i[ <- median(x)
}
se.in.median <- sd(medians)
return(se.in.medians)

}
Now to repeat our original calculations, we define a simulator function:

# Inputs: None
# Output: ten draws from the mean 3, s.d. 2 Gaussian
simulator.1l <- function() {



return(rnorm(10,3,2))

}
If we now call
find.se.in.median(B=100,simulator=simulator.1)

then every time find.se.in.median goes through the for loop, it will call
simulator.1, which in turn will produce the right random numbers. If we also
define

# Inputs: None
# Output: 37 draws from the rate 2 exponential
simulator.2 <- function() {
return(rexp(37,2))
X

then to find the standard error in the median of this, we just call
find.se.in.median(B=100,simulator=simulator.2)

This same approach works if we want to sample from a much more compli-
cated distribution. If we fit a locally-linear kernel regression to the Old Faithful
data, and want a standard error in the median of the predicted waiting times,
with noise coming from resampling cases, we would do something like this for
the simulator

# Inputs: None
# Output: The fitted waiting times of a bootstrapped kernel smooth from the
# geyser data
simulator.3 <- function() {
if (lexists("geyser")) {
require (MASS)
data(geyser)
}
n <- nrow(geyser)
resampled.rows <- sample(l:n,size=n,replace=TRUE)
geyser.r <- geyser[resampled.rows,]
fit <- npreg(waiting~duration,data=geyser.r,regtype="11")
waiting.times <- npreg$mean
return(waiting.times)

}
and then this for to find the standard error in the median:
find.se.in.median(B=100,simulator=simulator.3)

By breaking up the task this way, if we encounter errors or just general
trouble when we run that last command, it is easier to localize the problem.
We can check whether find.se.in.median seems to work properly with other



simulator functions. (For instance, we might right a “simulator” that either
does rep(10,1) or rep(10,-1) with equal probability, since then we can work
out what the standard error of the median ought to be.) We can also check
whether simulator.3 is working properly, and finally whether there is some
issue with putting them together, say that the output from the simulator is not
quite in a format that find.se.in.median can handle. If we just have one big
ball of code, it is much harder to read, to understand, to debug, and to improe.

To turn to that last point, one of the things R does poorly is explicit it-
eration with for loops. (This was a design choice, but the reasons for it are
not our concern here.) It’s generally better to replace such loops with “vec-
torized” functions, which do the iteration using fast code outside of R. One of
these, especially for this situation, is the function replicate. We can re-write
find.se.in.median using it:

# Inputs: number of replicates (B)
# Simulator function (simulator)
# Presumes: simulator is a no-argument function which produces a vector of
# numbers
# Outputs: Standard error in the median of the output of simulator
find.se.in.median <- function(B,simulator) {
medians <- replicate(B,median(simulator()))
se.in.median <- sd(medians)
return(se.in.median)

}

Again: shorter, faster, and easier to understand (if you know what replicate
does). Also, because we are telling this what simulation function to use, and
writing those functions separately, we do not have to change any of our simula-
tors. They don’t care how find.se.in.median works. In fact, they don’t care
that there is any such function — they could be used as components in many
other functions which can also process their outputs. So long as these interfaces
are maintained, the inner workings of the functions are irrelevant to each other.

Suppose for instance that we want not the standard error of the median,
but the interquartile range of the median — the median is after all a “robust”,
outlier-resistant measure of the central tendency, and the IQR is likewise a
robust measure of dispersion. This is now easy:

# Inputs: number of replicates (B)
# Simulator function (simulator)
# Presumes: simulator is a no-argument function which produces a vector of
# numbers
# Outputs: Interquartile range of the median of the output of simulator
find.iqr.of .median <- function(B,simulator) {
medians <- replicate(B,median(simulator()))
igr.of .median <- IQR(medians)
return(iqr.of.median)
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Or for that matter the good old standard error of the mean:

# Inputs: number of replicates (B)
# Simulator function (simulator)
# Presumes: simulator is a no-argument function which produces a vector of
# numbers
# Outputs: Standard error of the mean of the output of simulator
find.se.of .mean <- function(B,simulator) {
means <- replicate(B,mean(simulator()))
se.of .mean <- sd(means)
return(se.of .mean)

}

These last few examples suggest that we could abstract even further, by
swapping in and out different estimators (like median and mean) and different
summarizing functions (like se or IQR).

# Inputs: number of replicates (B)
# Simulator function (simulator)
# Estimator function (estimator)
# Sample summarizer function (summarizer)
# Presumes: simulator is a no-argument function which produces a vector of
# numbers
# estimator is a function that takes a vector of numbers and produces one
# output
# summarizer takes a vector of outputs from estimator
# Outputs: Summary of the simulated distribution of estimates
summarize.sampling.dist.of.estimates <- function(B,simulator,estimator,
summarizer) {
estimates <- replicate(B,estimator(simulator()))
return(summarizer (estimates))

3

The name is too long, of course, so we should replace it with something catchier:

bootstrap <- function(B,simulator,estimator,summarizer) {
estimates <- replicate(B,estimator(simulator()))
return(summarizer (estimates))

}
Our very first example is equivalent to
bootstrap(B=100,simulator=simulator.l,estimator=median, summarizer=sd)

bootstrap is just two lines: one simulates and re-estimates, the other sum-
marizes the re-estimates. This is the essence of what we are trying to do, and
is logically distinct from the details of particular simulators, estimators and
sumimaries.



We started with a particular special case and generalized it. The alternative
route is to start with a very general framework — here, writing bootstrap —
and then figure out what lower-level functions we would need to make it work in
a the case at hand, writing them if necessary. (We need to write a simulator, but
someone’s already written median for us.) Getting the first stage right involves
a certain amount of reflection on how to solve the problem — it’s rather like
the strategy of doing a “show that” math problem by starting from the desired
conclusion and working backwards.

It is still somewhat clunky to have to write a new function every time we
want to change the settings in the simulation, but this has gone on long enough.



