
Solutions to Homework 2

Spring 2008

1. Write the entropy as−
∑m

i=1 pi log2 pi, remembering (Figure 1) that 0 log 0 =
0.

(a) 0 ≤ pi ≤ 1 for all i, so log2 pi ≤ 0, and −pi log2 pi ≥ 0. Hence, H ≥ 0,
being a sum of non-negative terms.

(b) There are several ways to do this one. Using the hint, write

pi =
1
m

+ δi (1)

Since
∑

i pi = 1, we must also have
∑

i δi = 0. What we’d like to
show is that H is maximized when all the δi = 0. At this point, we
have a situation like that in note about maximizing likelihood for
Markov chain. We can either solve for one of the δi in terms of the
others, and maximize with respect to them, or we can use Lagrange
multipliers. Let’s do that: the Lagrangian is

L = −
m∑

i=1

(
1
m

+ δi

)
log2

(
1
m

+ δi

)
+ λ

∑
i

δi (2)

Taking the derivative of Lwith respect to δi,

0 = −
[
log2

1
m

+ δi +
1

ln 2

1
m + δi

1
m + δi

]
+ λ (3)

= − log2

(
1
m

+ δi

)
− 1

ln 2
+ λ (4)

log2

(
1
m

+ δi

)
= − 1

ln 2
+ λ (5)

1
m

+ δi = 2−
1

ln 2+λ (6)

δi = − 1
m

+ 2−
1

ln 2+λ (7)

On the other hand, taking the derivative of L with respect to λ, we
recover the constraint:

n∑
i=1

δi = 0 (8)
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Figure 1: Plot of p log2 p versus p. Note that 0 log 0 = 0.
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Plugging in Eq. 7, and noticing that it is the same for all i,

0 =
m∑

i=1

− 1
m

+ 2−
1

ln 2+λ (9)

= m

[
− 1

m
+ 2−

1
ln 2+λ

]
(10)

= − 1
m

+ 2−
1

ln 2+λ (11)

so (going back to Eq. 7 again) δi = 0, as desired.

2. We need to do three things here. First, we need to generate symbol se-
quences from the logistic map. Second, we need to count the number of
times each word of length L appears, and how often it is immediately fol-
lowed by each other word of length L. Finally, we need to somehow use
those counts to test independence. (Notice, by the way, that the second
part, about gathering count statistics of words, is something we’re going
to have to use a lot in the other problems.) I’ll do this by writing a bunch
of small functions, each of which solves a small piece of the problem; this
makes it easier to test that they’re doing what they are supposed to, and
to re-use them later, if need be.

The first part uses some code for the logistic map (taken from 03.R, plus
the discretization function.

logistic.map <- function(x,r) {
return(4*r*x*(1-x))

}

logistic.map.ts <- function(timelength,r,initial.cond=NULL) {
x <-vector(mode="numeric",length=timelength)
if(is.null(initial.cond)) {

x[1] <-runif(1)
} else {

x[1] <-initial.cond
}
for (t in 2:timelength) {

x[t] = logistic.map(x[t-1],r)
}
return(x)

}

logistic.genpart <- function(x) {
# Apply the generating partition of the logistic map to a vector of
# real values
# So return "L" at each position where x < 0.5 and "R" elsewhere
ifelse(x<0.5,’L’,’R’)
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}

logistic.symbseq <- function(timelength,r) {
# Get a real-valued trajectoy from the logistic map
x <- logistic.map.ts(timelength,r)
# Apply the generating partition and return that
s <- logistic.genpart(x)
return(s)

}

The second part needs us to take a window of length L (not to be con-
fused with the symbol “L”!), slide it along the symbol sequence, and
record all the patterns we see. We also need to keep track of which pat-
tern followed that one, in the next L block. Start with a function to find
all the different blocks, in order.1

symbseq.to.blocks <- function(s,L,mode="vectorized") {
# Take a symbol sequence and return a list of the (overlapping) blocks
# of length L it contains
n <- length(s)
# A length L block can’t start at any position whose index is greater
# than n-L+1 (though it could start there).
# Should really check that this is < n, and return an error if not!
max.index <- n -L+1
# We’ll need to repeatedly take a block from the sequence and collapse it
# down into a string, so make that into a function
collapser <- function(i) {paste(s[i:(i+L-1)],collapse="")}
# Now: chop the sequence into overlapping blocks, collapse each one down, put
# all the strings in a vector
# Natural way to do this is by iteration, but R is much happier (several
# times faster) with the "vectorized" alternative
if (mode == "vectorized") {

blocks <- sapply(1:max.index,collapser)
} else {

blocks <- NULL # Null list
for (i in 1:max.index) {

blocks <- c(blocks, collapser(i))
}

}
return(blocks)

}

Now we need to get not just each block of length L, but also the following
block of length L. We’ll do this by taking the complete list of L-blocks and
splitting it into two parts (which in general will overlap).

1The code below differs slightly from the one in the handout with the partial solutions, because
I realized explicit iteration was slowing things down, and it could be vectorized.

4



symbseq.to.successive.blocks <- function(s,L) {
n <- length(s)
# Produce the complete list of length-L blocks
all.blocks <- symbseq.to.blocks(s,L)
# The "leaders" begin at positions 1, 2, ... n-2L+1 (because there
# needs to be another, following block of length L after each of them)
max.index.leaders <- n-2*L+1
# The "followers" begin at positions L+1, L+2, ... n-L+1 (because there
# needs to be a "leader" block of lenght L before each of them)
min.index.followers <- L+1
max.index.followers <- n-L+1
leaders <- all.blocks[1:max.index.leaders]
followers <- all.blocks[min.index.followers:max.index.followers]
return(list(leaders=leaders,followers=followers))

}

At this point it’s a good idea to check that everything is working right
with a small example.

> ss <- c("L","R","L","R","L","R","L")
> symbseq.to.blocks(ss,2)
[1] "LR" "RL" "LR" "RL" "LR" "RL"
> symbseq.to.successive.blocks(ss,2)
$leaders
[1] "LR" "RL" "LR" "RL"

$followers
[1] "LR" "RL" "LR" "RL"

You can check by hand that the code works on this example, and on this
one:

> rr <- c("L","L","L","R","L","R","R")
> symbseq.to.blocks(rr,2)
[1] "LL" "LL" "LR" "RL" "LR" "RR"
> symbseq.to.successive.blocks(rr,2)
$leaders
[1] "LL" "LL" "LR" "RL"

$followers
[1] "LR" "RL" "LR" "RR"

Ideally at this point I’d check an L = 3 case, but I’m just the teacher here.

Finally, we need to test whether the follower blocks are statistically inde-
pendent of the leader blocks. The standard way to test whether two dis-
crete random variables are independent is to use the χ2 (“chi-squared”)
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test. If you need a refresher on the theory of this test, I’d suggest either
Wikipedia, or (better yet) Larry Wasserman’s All of Statistics. Fortunately,
this is built in to R, in the imaginatively-named function chisq.test.
It needs to be given a contingency table, but there is a function to build
that, called table. Here’s how table works:

> table(symbseq.to.successive.blocks(ss,2))
followers

leaders LR RL
LR 2 0
RL 0 2

and here’s how the testing function works:

> chisq.test(table(symbseq.to.successive.blocks(ss,2)))

Pearson’s Chi-squared test with Yates’ continuity correction

data: table(symbseq.to.successive.blocks(ss, 2))
X-squared = 1, df = 1, p-value = 0.3173

Warning message:
In chisq.test(table(symbseq.to.successive.blocks(ss, 2))) :

Chi-squared approximation may be incorrect

chisq.test is giving us a warning here, because the χ2 approximation
to the distribution of the test statistic is only valid if there are a fairly
large number of counts for each cell in the table. The usual rule of thumb
is that the expected number of counts must be at least 5; let’s say 10 to be
safe. Each cell in the table corresponds to a word of length 2L, and we
expect (for IID coin-tossing) that each such word is equally likely, so we
want 10 = n/22L, or n = 10× 22L.

Putting everything together, then, we can write the following program.

logistic.map.independence.test <- function(L,n=min(1e4,10*(2ˆ(2*L))),r=1) {
s <- logistic.symbseq(n,r)
successive.blocks <- symbseq.to.successive.blocks(s,L)
my.tab <- table(successive.blocks)
my.test <- chisq.test(my.tab)
return(list(p.value=my.test$p.value,test=my.test,count.table=my.tab))

}

The default value for n is set so that the program won’t take forever to
run if you should accidentally input a large L — but that’s only a default
so it can be over-ridden. Returning the full test results and the count table
as well as the p-value is not strictly necessary but doesn’t hurt. Working
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for different values of r is also a bonus (but just as easy as not including
it).

How do we know if this is working? If the “leader” and “follower”
blocks are independent, then the p value of the test should be uniformly
distributed on [0, 1], and their CDF should be a straight diagonal line.
Let’s check that by re-running the test a bunch of times and plotting the
empirical CDF (Figure 2).

> plot(ecdf(replicate(1000,logistic.map.independence.test(2)$p.value)),
xlab="Nominal p-value",ylab="True p-value",main="Distribution of
p-values")

> abline(a=0,b=1,col="blue",lty=2)

3. Recall that the topological entropy rate is defined as

h0 ≡ lim
L→∞

1
L

log WL (12)

where WL is the number of allowed words of length L.

(a) There are at least three ways to do this. The simplest one is to just
count the number of distinct observed words of length L, ŴL, and
estimate by division:

ĥdivision
0 ≡ 1

L
log ŴL (13)

for some large L, as our estimate of h0.
The second way is to notice that if the limit exists, then for large L
we must have

log WL ≈ C + h0L (14)

where C is some constant we don’t care about. So if we regress ŴL

on L, the slope will be an estimate of h0. Call this the regression
estimate.
The third way is to use the fact, mentioned in the on-line notes about
the topological entropy rate, that

h0 = lim
L→∞

log WL − log WL−1 (15)

(Notice that this also follows from the linear expression I gave above.)
So yet another estimate of h0 is to take

log ŴL − log ŴL−1 (16)

for some large L. Call this the difference estimate.
All three estimates will ultimately converge on the same value, if
you feed them enough data. In principle, all of them work best
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Figure 2: Distribution of p-values obtained from question 2 (black circles), with
theoretical uniform distribution (dashed blue line).
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when the value of L is large. In practice, if L is too large relative
to n, we see only a very small sample of the allowed words, i.e., ŴL

becomes much smaller than WL, introducing systematic errors into
our estimate. At the very least, when ŴL > ŴL+1, we do not have
enough data to say what is happening with the longer words.
For the logistic map, we use a binary alphabet (symbols set), so there
are at most 2L words of each length. To give us some chance of
seeing each of them, we should use a symbol sequence which is at
least a few times longer than the number of words we might run
into, say 10× 2L.
Here’s how to do the division estimate.

logistic.TER.division <- function(r,L,n=10*(2ˆL)) {
s <- logistic.symbseq(n,r)
blocks <- symbseq.to.blocks(s,L)
word.table <- table(blocks)
W.L <- dim(word.table) # Counts number of distinct allowed words
return(log(W.L)/L)

}

Notice the trick with using the table function to identify all the
distinct words. Let’s re-cycle that for the regression estimate.

logistic.TER.regression <- function(r,L,n=10*(2ˆL)) {
s <- logistic.symbseq(n,r)
W <- vector(mode="numeric",length=L)
for (i in (1:L)) {

blocks <- symbseq.to.blocks(s,i)
W[i] <- dim(table(blocks))

}
my.regression <- lm(logcounts ˜ lengths,

data.frame(logcounts=log(W),lengths=(1:L)))
return(as.vector(my.regression$coefficients[2]))

}

And here’s the difference estimate:

logistic.TER.difference <- function(r,L,n=10*(2ˆL)) {
s <- logistic.symbseq(n,r)
lastW <- dim(table(symbseq.to.blocks(s,L)))
nextotlastW <- dim(table(symbseq.to.blocks(s,L-1)))
return(log(lastW) - log(nextotlastW))

}

To double-check these, notice that when r = 1, we have IID coin-
tossing, and every sequence of length L is allowed, so WL = 2L.
This means that h0 should be log 2 = 0.6931472.

> logistic.TER.division(1,3)
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[1] 0.6931472
> logistic.TER.regression(1,3)
[1] 0.6931472
> logistic.TER.difference(1,3)
[1] 0.6931472

which checks out.
Finally, let’s plot these estimates as functions of r to see if we’re get-
ting something reasonable. We know that h0 should be zero when-
ever the logistic map goes to a limit cycle (see the online notes for
details). I use L = 6 simply for reasons of speed. The plot is Figure
3.

> r.values <- seq(from=0,to=1,length.out=200)
> difference.values <- sapply(r.values,logistic.TER.difference,L=6)
> plot(r.values,difference.values,type="l",xlab="r",ylab="Estimated h0",

main="topological entropy rate estimates")
> division.values <- sapply(r.values,logistic.TER.division,L=6)
> lines(r.values,division.values,lty=2)
> regression.values <- sapply(r.values,logistic.TER.regression,L=6)
> lines(r.values,regression.values,lty=3)

(b) The easiest way to get a value for the standard error here is simply
to re-run the estimator multiple times and take the standard devi-
ation. This only captures the error associated with the fluctuations
from one run of the simulation to another, rather than the systematic
errors which come from biases in the estimator, etc.

4. (a) Basically all the parts needed for this were already assembled for
solving problem 2. We need to estimate the 2 × 2 transition matrix
Pij , and the maximum likelihood estimates are

P̂ij =
Nij∑1

j=0 Nij

(17)

where Nij counts the number of times the symbol i is followed by
the symbol j. We can get this from the symbseq.to.successive.blocks
function we wrote, followed by using table.

markov.mle.1 <- function(s) {
# Estimate a binary Markov chain
blocks <- symbseq.to.successive.blocks(s,1)
counts <- table(blocks)
# prop.table converts a count table to proportions, either by rows
# or by columns, depending on 2nd argument - see its help file
mle <- prop.table(counts,1)
log.like <- sum(counts[counts>0]*log(mle[mle>0]))
return(list(transition.matrix=mle,log.like=log.like))

}
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We’ll need the log-likelihood in part c to compute the BIC scores, so
we may as well compute it here, where it’s easy. Remember it’s

L =
∑
i,j

Nij log P̂ij (18)

Even though 0 log 0 = 0, R does not like taking log of 0, so the con-
ditions in the sum restrict us to the strictly-positive terms.
Here’s a quick check that this is working properly:

> ss <- rbinom(20,1,0.7)
> ss
[1] 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1

> table(symbseq.to.successive.blocks(ss,1))
followers

leaders 0 1
0 2 2
1 2 13

> markov.mle.1(ss)
$transition.matrix

followers
leaders 0 1

0 0.5000000 0.5000000
1 0.1333333 0.8666667

$log.like
[1] -8.662706

There are four positions where the sequence has “0”; two of them
are followed by “0” and two of them are followed by “1”. There are
15 positions where a “1” is followed by something. (There is also a
last “1”, at the end, and we don’t know what it transitions to.) Of
these, two of them are followed by “0”. So the counts are correct,
and converting the counts to probabilities gives us exactly what the
function says. This isn’t right — the data came from IID coin-tossing,
with p = 0.7, so the right matrix would be[

0.3 0.7
0.3 0.7

]
but it’s not crazy to not get this right with only 20 data points!
To see this program in a better light, let’s write a small function to
simulate from a binary Markov chain.

rbinmarkov <- function(n, p01, p11, p1start=-1) {
# n is the length of the output.
# A binary Markov chain has two free parameters in its transition
# matrix, which can be chosen in several ways --- here the
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# probability that "0" is followed by "1", and that "1" is followed
# by "1".
# Also need the probability of starting in state 1 (since that
# implicitly gives the probability of starting in state 0, as well)
# The default negative number means that this is calculated from the
# stationary distribution, below
if (p1start < 0) {

P = matrix(c(1-p01,p01,1-p11,p11),nrow=2)
# The invariant distribution is the proportional to the
# first eigenvector
P.inv = eigen(P)$vectors[,1]
# the eigen routine returns vectors whose norm is 1, so the
# components don’t sum to 1, so we need to fix that
p1start = P.inv[2]/sum(P.inv)
# We need the 2nd component because "0" is the first symbol.

}
s = vector(length=n)
s[1] = rbinom(1,1,p1start)
for (i in 2:n) {

s[i] = rbinom(1,1,ifelse(s[i-1]<1,p01,p11))
}
return(s)

}

Now let’s try our estimator on the output from this.

> rs <- rbinmarkov(1e4,0.3,0.7)
> markov.mle.1(rs)
$transition.matrix

followers
leaders 0 1

0 0.7086676 0.2913324
1 0.3046236 0.6953764

$log.like
[1] -6088.478

Since the true matrix is
[

0.7 0.3
0.3 0.7

]
, this seems to be working.

(b) We have most of the tools we need for this, too. We need to get the
count for how often each block of length k is followed by each binary
symbol (not by each block of length k again). We’ll use symbseq.to.blocks
twice.

symbseq.to.successive.blocks.varying <- function(s,L.lead,L.follow) {
all.leaders <- symbseq.to.blocks(s,L.lead)
all.followers <- symbseq.to.blocks(s,L.follow)
n <- length(s)
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# Now need to pick only the leaders which actually have followers
max.lead.index <- n - L.lead - L.follow +1
leaders <- all.leaders[1:max.lead.index]
# and pick the followers which have leaders, which is all but the
# first L.lead of them
followers <- all.followers[-(1:L.lead)]
return(list(leaders=leaders,followers=followers))

}

We can test this by, first of all, checking that when Llead = Lfollow, it
gives the same results as symbseq.to.successive.blocks.

> ss
[1] 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1

> symbseq.to.successive.blocks(ss,2)
$leaders
[1] "11" "11" "11" "11" "11" "11" "11" "11" "11" "11" "10" "00" "00" "01" "11"

[16] "11" "11"

$followers
[1] "11" "11" "11" "11" "11" "11" "11" "11" "10" "00" "00" "01" "11" "11" "11"

[16] "10" "01"

> symbseq.to.successive.blocks.varying(ss,2,2)
$leaders
[1] "11" "11" "11" "11" "11" "11" "11" "11" "11" "11" "10" "00" "00" "01" "11"

[16] "11" "11"

$followers
[1] "11" "11" "11" "11" "11" "11" "11" "11" "10" "00" "00" "01" "11" "11" "11"

[16] "10" "01"

Now for the estimator itself.

markov.mle.k <- function(k,s) {
# Estimate a binary Markov chain of order k
blocks <- symbseq.to.successive.blocks.varying(s,k,1)
counts <- table(blocks)
mle <- prop.table(counts,1)
log.like <- sum(counts[counts>0]*log(mle[mle>0]))
return(list(transition.matrix=mle,log.like=log.like))

}

(The backwards-seeming order of the arguments here is make things
easier in part c.)
If this is working, then saying k = 1 should give us the same thing
as markov.mle.1, which it does.

> markov.mle.k(1,ss)
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$transition.matrix
followers

leaders 0 1
0 0.5000000 0.5000000
1 0.1333333 0.8666667

$log.like
[1] -8.662706

But using a higher value of k should give us something else:

> markov.mle.k(2,ss)
$transition.matrix

followers
leaders 0 1

00 0.5000000 0.5000000
01 0.0000000 1.0000000
10 0.5000000 0.5000000
11 0.1538462 0.8461538

$log.like
[1] -8.353788

(You can check by hand that this is the right transition matrix when
k = 2.)
Similarly when we use a first-order Markov chain as an input, we
should get something with (nearly) repeated rows in the output
transition matrix:

> markov.mle.k(2,rs)
$transition.matrix

followers
leaders 0 1

00 0.7117615 0.2882385
01 0.3015447 0.6984553
10 0.7011417 0.2988583
11 0.3057681 0.6942319

$log.like
[1] -6086.958

Notice that the log-likelihood has gone up, compared to the result
with markov.mle.1.

(c) We just need to invoke markov.mle.k a few times:

markov.mle.bic <- function(kmax,s) {
# Use BIC to estimate the order of a binary Markov chain (capped at
# kmax), from a symbol sequence s
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n <- length(s)
# The penalty in the BIC is (d/2)log(n), where d is the number of
# free parameters
# For a kth order Markov chain, with alphabet size m, there are
# mˆk states or contexts, and each of them has (m-1) transition
# probabilities we need to estimate. (See slides for lecture 6.)
# Here m = 2, because we’ve got a binary alphabet.
penalty <- function(k) { (2ˆk)*(1/2)*log(n) }
# Estimate kth-order models for all k from 1 to kmax
fits <- sapply(1:kmax,markov.mle.k,s)
BIC <- as.numeric(fits[2,]) - penalty(1:kmax)
best.k <- which.max(BIC)
best.BIC <- max(BIC)
# extra [[1]] in next line is de-referencing
best.mle <- fits[1,best.k][[1]]
best.loglike <- as.numeric(fits[2,best.k])
return(list(k=best.k,transition.matrix=best.mle,log.like=best.loglike,

BIC=best.BIC))
}

What we’d like is for this to pick the lowest possible order (1) for
our running example (since that was from an IID source, which is
really an order 0 Markov chain).

> markov.mle.bic(3,ss)
$k
[1] 1

$transition.matrix
followers

leaders 0 1
0 0.5000000 0.5000000
1 0.1333333 0.8666667

$log.like
[1] -8.662706

$BIC
[1] -11.65844

With the first-order Markov chain example:

> markov.mle.bic(5,rs)
$k
[1] 1

$transition.matrix
followers
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leaders 0 1
0 0.7086676 0.2913324
1 0.3046236 0.6953764

$log.like
[1] -6088.478

$BIC
[1] -6097.689

So, again, even though the likelihood is higher at higher order, the
BIC procedure successfully picks the lower-order chain. To really
test this, I ought to feed it output from something which is a higher-
order chain, but once again I’m just the teacher.

5. It will simplify things to have a consistent order in which to refer to the
states. Which order doesn’t matter, but I’ll go from the top down in the
figure in the Lecture 6 slides: “AAAB” = 1, “BA” = 2, “BAB” = 3, “BAA”
= 4, “BAAB” = 5, “AAA” = 6, “BB” = 7.

(a) This is a stochastic finite automaton, so at each time-step we have
a state, which is hidden, and a symbol, which is what we want to
output. The probability of each symbol depends on the state; the
current state and the symbol fix the next state. There are several
ways to do this, but one is to use two matrices, one for the symbol-
emission probabilities, and one for the transitions.
With a binary alphabet, the emission probability matrix can just be a
vector, say the probabilities of producing the symbol “A”. The tran-
sition matrix should have two columns, one for each symbol, and a
row for each state; the first column gives the state gone to on “A”,
the second on “B”.

foulkes.emit.A <- c(0.1875,0.5625,0.250,0.5625,0.750,0.1875,0.9375)
foulkes.trans <- rbind(c(2,7),c(4,3),c(2,7),c(6,5),c(2,7),c(6,1),

c(2,7))

To simulate, we pick an arbitrary starting state, then emit either an
“A” or a “B” with a probability given by foulkes.emit.A, and
then pick a new state according to foulkes.trans.

rfoulkes <- function(n,burn.in=0,debug=FALSE) {
# Generate a symbol sequence of length n from the Foulkes process
# in debug mode, return the state sequence as well as the symbol
# sequence
# burn.in gives number of steps to discard before beginning output
# (used to approach stationary distribution via mixing)
foulkes.emit.A <- c(0.1875,0.5625,0.250,0.5625,0.750,0.1875,0.9375)
foulkes.trans <- rbind(c(2,7),c(4,3),c(2,7),c(6,5),c(2,7),c(6,1),
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c(2,7))
n.total <- n+burn.in
x <- vector(length=n)
if (debug) { recorded.s <- vector(length=n) }
s <- sample(1:7,1)
for (i in 1:n.total) {

u = rbinom(1,1,foulkes.emit.A[s])
emitted = ifelse(u == 1,"A","B")
if (i > burn.in) {

if (debug) { recorded.s[i-burn.in] <- s }
x[i-burn.in] <- emitted

}
s = foulkes.trans[s,ifelse(emitted=="A",1,2)]

}
if (debug) { return(list(states=recorded.s,symbols=x)) }
else { return(x) }

}

Notice the burn.in argument — it makes the process run for a cer-
tain number of steps, but only begins giving output after that burn-
in is over. This is useful if we want to simulate from the invari-
ant distribution of the process (so the data are stationary), but don’t
want to figure out what that is explicitly; we rely on mixing to fig-
ure it out for us! (In this case, it would be possible to construct the
7× 7 transition matrix of the states and find then invariant distribu-
tion by taking its leading eigenvector, as in rbinmarkov, but that
seems like more work, and the burn-in strategy is applicable when
explicitly solving for the invariant distribution is impractical.)
Also notice the debug argument. When this is true, the function
outputs the sequence of states as well as the sequence of symbols.
This is useful for checking that the function is working properly.
For instance, this checks that the symbol-emission probabilities are
working right:

> prop.table(table(rfoulkes(n=1e5,debug=TRUE)),1)
symbols

states A B
1 0.18450646 0.81549354
2 0.55959680 0.44040320
3 0.25205819 0.74794181
4 0.56649626 0.43350374
5 0.75181422 0.24818578
6 0.19366394 0.80633606
7 0.93751516 0.06248484

and this checks that the only transitions which are happening are
the ones which ought to be:

18



> table(symbseq.to.successive.blocks(rfoulkes(n=1e4,burn.in=100,
debug=TRUE)$states,1))

followers
leaders 1 2 3 4 5 6 7

1 0 149 0 0 0 0 702
2 0 0 1244 1516 0 0 0
3 0 340 0 0 0 0 904
4 0 0 0 0 665 851 0
5 0 505 0 0 0 0 160
6 851 0 0 0 0 227 0
7 0 1766 0 0 0 0 119

We can also use the counts to check that states are working properly,
e.g. that sates 2 (“BA”) and 7 (“BB”) are working:

> prop.table(table(symbseq.to.successive.blocks.varying(rfoulkes(1e4,
burn.in=100),2,1)),1)

followers
leaders A B

AA 0.41663586 0.58336414
AB 0.35635562 0.64364438
BA 0.58008817 0.41991183
BB 0.94753921 0.05246079

You can conduct similar tests for histories (“leaders”) of length 3
and 4, picking out those states, and length 5 or longer (confirming
that additional historical information doesn’t change the conditional
distributions). Note that to get accurate estimates of probabilities
over long words (e.g., length 5 if k = 4) you need increasingly large
simulations.

(b) The Foulkes process is can be written as a 4th order Markov chain,
with 24 = 16 states, and we know (from Guttorp, p. 72) that BIC
is a consistent estimator of the order of Markov chains, so k̂ should
approach 4 eventually.

> foulkes.k.1e3 <- replicate(100,markov.mle.bic(6,rfoulkes(1e3))$k)
> mean(foulkes.k.1e3)
[1] 3.53
> sd(foulkes.k.1e3)
[1] 0.5213619
> foulkes.k.1e4 <- replicate(100,markov.mle.bic(6,rfoulkes(1e4))$k)
> mean(foulkes.k.1e4)
[1] 4
> sd(foulkes.k.1e4)
[1] 0

so somewhere between n = 103 we go from estimating k̂ = 3.5± 0.5
to essentially always estimating k̂ = 4. With this much data, too,
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the estimated probabilities are (usually!) within ±0.05 of the true
probabilities.
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