
Solutions to Homework 2

Spring 2008

1. Write the entropy as−
∑m

i=1 pi log2 pi, remembering (Figure 1) that 0 log 0 =
0.

(a) 0 ≤ pi ≤ 1 for all i, so log2 pi ≤ 0, and −pi log2 pi ≥ 0. Hence,
H ≥ 0, being a sum of non-negative terms.

(b) There are several ways to do this one. Using the hint, write

pi =
1
m

+ δi (1)

Since
∑

i pi = 1, we must also have
∑

i δi = 0. What we’d like to
show is that H is maximized when all the δi = 0. At this point,
we have a situation like that in note about maximizing likelihood for
Markov chain. We can either solve for one of the δi in terms of the
others, and maximize with respect to them, or we can use Lagrange
multipliers. Let’s do that: the Lagrangian is

L = −
m∑

i=1

(
1
m

+ δi

)
log2

(
1
m

+ δi

)
+ λ

∑
i

δi (2)

Taking the derivative of L with respect to δi,

0 = −
[
log2

1
m

+ δi +
1

ln 2

1
m + δi

1
m + δi

]
+ λ (3)

= − log2

(
1
m

+ δi

)
− 1

ln 2
+ λ (4)

log2

(
1
m

+ δi

)
= − 1

ln 2
+ λ (5)

1
m

+ δi = 2−
1

ln 2+λ (6)

δi = − 1
m

+ 2−
1

ln 2+λ (7)

On the other hand, taking the derivative of L with respect to λ, we
recover the constraint:

n∑
i=1

δi = 0 (8)

1

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0

plog2((p))

p

pl
og

2((p
))

Figure 1: Plot of p log2 p versus p. Note that 0 log 0 = 0.

2

Plugging in Eq. 7, and noticing that it is the same for all i,

0 =
m∑

i=1

− 1
m

+ 2−
1

ln 2+λ (9)

= m

[
− 1

m
+ 2−

1
ln 2+λ

]
(10)

= − 1
m

+ 2−
1

ln 2+λ (11)

so (going back to Eq. 7 again) δi = 0, as desired.

2. We need to do three things here. First, we need to generate symbol
sequences from the logistic map. Second, we need to count the number
of times each word of length L appears, and how often it is immediately
followed by each other word of length L. Finally, we need to somehow use
thouse counts to test independence. (Notice, by the way, that the second
part, about gathering count statistics of words, is something we’re going
to have to use a lot in the other problems.) I’ll do this by writing a bunch
of small functions, each of which solves a small piece of the problem; this
makes it easier to test that they’re doing what they are supposed to, and
to re-use them later, if need be.

The first part uses some code for the logistic map (taken from 03.R, plus
the discretization function.

logistic.map <- function(x,r) {
return(4*r*x*(1-x))

}

logistic.map.ts <- function(timelength,r,initial.cond=NULL) {
x <-vector(mode="numeric",length=timelength)
if(is.null(initial.cond)) {
x[1] <-runif(1)

} else {
x[1] <-initial.cond

}
for (t in 2:timelength) {
x[t] = logistic.map(x[t-1],r)

}
return(x)

}

logistic.genpart <- function(x) {
Apply the generating partition of the logistic map to a vector of
real values
So return "L" at each position where x < 0.5 and "R" elsewhere
ifelse(x<0.5,’L’,’R’)

3

}

logistic.symbseq <- function(timelength,r) {
Get a real-valued trajectoy from the logistic map
x <- logistic.map.ts(timelength,r)
Apply the generating partition and return that
s <- logistic.genpart(x)
return(s)

}

The second part needs us to take a window of length L (not to be confused
with the symbol “L”!), slide it along the symbol sequence, and record all
the patterns we see. We also need to keep track of which pattern followed
that one, in the next L block. Start with a function to find all the different
blocks, in order.

symbseq.to.blocks <- function(s,L) {
Take a symbol sequence and return a list of the (overlapping) blocks
of length L it contains
n <- length(s)
A length L block can’t start at any position whose index is greater
than n-L+1 (though it could start there).
Should really check that this is < n, and return an error if not!
max.index <- n -L+1
blocks <- NULL # Null list
for (i in 1:max.index) {
blocks <- c(blocks, paste(s[i:(i+L-1)],collapse=""))

}
return(blocks)

}

Now we need to get not just each block of length L, but also the following
block of length L. We’ll do this by taking the complete list of L-blocks
and splitting it into two parts (which in general will overlap).

symbseq.to.successive.blocks <- function(s,L) {
n <- length(s)
Produce the complete list of length-L blocks
all.blocks <- symbseq.to.blocks(s,L)
The "leaders" begin at positions 1, 2, ... n-2L+1 (because there
needs to be another, following block of length L after each of them
max.index.leaders <- n-2*L+1
The "followers" begin at positions L+1, L+2, ... n-L+1 (because there
needs to be a "leader" block of lenght L before each of them
min.index.followers <- L+1
max.index.followers <- n-L+1

4

leaders <- all.blocks[1:max.index.leaders]
followers <- all.blocks[min.index.followers:max.index.followers]
return(list(leaders=leaders,followers=followers))

}

At this point it’s a good idea to check that everything is working right
with a small example.

> ss <- c("L","R","L","R","L","R","L")
> symbseq.to.blocks(ss,2)
[1] "LR" "RL" "LR" "RL" "LR" "RL"
> symbseq.to.successive.blocks(ss,2)
$leaders
[1] "LR" "RL" "LR" "RL"

$followers
[1] "LR" "RL" "LR" "RL"

You can check by hand that the code works on this example, and on this
one:

> rr <- c("L","L","L","R","L","R","R")
> symbseq.to.blocks(rr,2)
[1] "LL" "LL" "LR" "RL" "LR" "RR"
> symbseq.to.successive.blocks(rr,2)
$leaders
[1] "LL" "LL" "LR" "RL"

$followers
[1] "LR" "RL" "LR" "RR"

Ideally at this point I’d check an L = 3 case, but I’m just the teacher here.

Finally, we need to test whether the follower blocks are statitically inde-
pendent of the leader blocks. The standard way to test whether two dis-
crete random variables are independent is to use the χ2 (“chi-squared”)
test. If you need a refresher on the theory of this test, I’d suggest either
Wikipedia, or (better yet) Larry Wasserman’s All of Statistics. Fortu-
nately, this is built in to R, in the imaginatively-named function chisq.test.
It needs to be given a contigency table, but there is a function to build
that, called table. Here’s how table works:

> table(symbseq.to.successive.blocks(ss,2))
followers

leaders LR RL
LR 2 0
RL 0 2

5

and here’s how the testing function works:

> chisq.test(table(symbseq.to.successive.blocks(ss,2)))

Pearson’s Chi-squared test with Yates’ continuity correction

data: table(symbseq.to.successive.blocks(ss, 2))
X-squared = 1, df = 1, p-value = 0.3173

Warning message:
In chisq.test(table(symbseq.to.successive.blocks(ss, 2))) :
Chi-squared approximation may be incorrect

chisq.test is giving us a warning here, because the χ2 approximation to
the distribution of the test statistic is only valid if there are a fairly large
number of counts for each cell in the table. The usual rule of thumb is
that the expected number of counts must be at least 5; let’s say 10 to be
safe. Each cell in the table corresponds to a word of length 2L, and we
expect (for IID coin-tossing) that each such word is equally likely, so we
want 10 = n/22L, or n = 10× 22L.

Putting everything together, then, we can write the following program.

logistic.map.independence.test <- function(L,n=min(1e4,10*(2^(2*L))),r=1) {
s <- logistic.symbseq(n,r)
successive.blocks <- symbseq.to.successive.blocks(s,L)
my.tab <- table(successive.blocks)
my.test <- chisq.test(my.tab)
return(list(p.value=my.test$p.value,test=my.test,count.table=my.tab))

}

The default value for n is set so that the program won’t take forever to run
if you should accidentally input a large L — but that’s only a default so
it can be over-ridden. Returning the full test results and the count table
as well as the p-value is not strictly necessary but doesn’t hurt. Working
for different values of r is also a bonus (but just as easy as not including
it).

How do we know if this is working? If the “leader” and “follower” blocks
are independent, then the p value of the test should be uniformly dis-
tributed on [0, 1], and their CDF should be a straight diagonal line. Let’s
check that by re-running the test a bunch of times and plotting the em-
pirical CDF (Figure 2).

> plot(ecdf(replicate(1000,logistic.map.independence.test(2)$p.value)),
xlab="Nominal p-value",ylab="True p-value",main="Distribution of p-values")

> abline(a=0,b=1,col="blue",lty=2)

6

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distribution of p−values

Nominal p−value

T
ru

e
p−

va
lu

e

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

Figure 2: Distribution of p-values obtained from question 2 (black circles), with
theoretical uniform distribution (dashed blue line).

7

3. Recall that the topological entropy rate is defined as

h0 ≡ lim
L→∞

1
L

log WL (12)

where WL is the number of allowed words of length L.

(a) There are at least three ways to do this. The simplest one is to just
count the number of distinct observed words of length L, ŴL, and
estimate by division:

ĥdivision
0 ≡ 1

L
log ŴL (13)

for some large L, as our estimate of h0.
The second way is to notice that if the limit exists, then for large L
we must have

log WL ≈ C + h0L (14)

where C is some constant we don’t care about. So if we regress ŴL

on L, the slope will be an estimate of h0. Call this the regression
estimate.
The third way is to use the fact, mentioned in the on-line notes about
the topological entropy rate, that

h0 = lim
L→∞

log WL − log WL−1 (15)

(Notice that this also follows from the linear expression I gave above.)
So yet another estimate of h0 is to take

log ŴL − log ŴL−1 (16)

for some large L. Call this the difference estimate.
All three estimates will ultimately converge on the same value, if you
feed them enough data. In principle, all of them work best when the
value of L is large. In practice, if L is too large relative to n, we see
only a very small sample of the allowed words, i.e., ŴL becomes much
smaller than WL, introducing systematic errors into our estimate. At
the very least, when ŴL > ŴL+1, we do not have enough data to
say what is happening with the longer words.
For the logistic map, we use a binary alphabet (symbols set), so there
are at most 2L words of each length. To give us some chance of seeing
each of them, we should use a symbol sequence which is at least a
few times longer than the number of words we might run into, say
10× 2L.
Here’s how to do the division estimate.

8

logistic.TER.division <- function(r,L,n=10*(2^L)) {
s <- logistic.symbseq(n,r)
blocks <- symbseq.to.blocks(s,L)
word.table <- table(blocks)
W.L <- dim(word.table) # Counts number of distinct allowed words
return(log(W.L)/L)

}

Notice the trick with using the table function to identify all the
distinct words. Let’s re-cycle that for the regression estimate.

logistic.TER.regression <- function(r,L,n=10*(2^L)) {
s <- logistic.symbseq(n,r)
W <- vector(mode="numeric",length=L)
for (i in (1:L)) {
blocks <- symbseq.to.blocks(s,i)
W[i] <- dim(table(blocks))

}
my.regression <- lm(logcounts ~ lengths,

data.frame(logcounts=log(W),lengths=(1:L)))
return(as.vector(my.regression$coefficients[2]))

}

And here’s the difference estimate:

logistic.TER.difference <- function(r,L,n=10*(2^L)) {
s <- logistic.symbseq(n,r)
lastW <- dim(table(symbseq.to.blocks(s,L)))
nextotlastW <- dim(table(symbseq.to.blocks(s,L-1)))
return(log(lastW) - log(nextotlastW))

}

To double-check these, notice that when r = 1, we have IID coin-
tossing, and every sequence of length L is allowed, so WL = 2L. This
means that h0 should be log 2 = 0.6931472.

> logistic.TER.division(1,3)
[1] 0.6931472
> logistic.TER.regression(1,3)
[1] 0.6931472
> logistic.TER.difference(1,3)
[1] 0.6931472

which checks out.
Finally, let’s plot these estimates as functions of r to see if we’re get-
ting something reasonable. We know that h0 should be zero whenever
the logistic map goes to a limit cycle (see the online notes for details).
I use L = 6 simply for reasons of speed. The plot is Figure 3.

9

> r.values <- seq(from=0,to=1,length.out=200)
> difference.values <- sapply(r.values,logistic.TER.difference,L=6)
> plot(r.values,difference.values,type="l",xlab="r",ylab="Estimated h0",

main="topological entropy rate estimates")
> division.values <- sapply(r.values,logistic.TER.division,L=6)
> lines(r.values,division.values,lty=2)
> regression.values <- sapply(r.values,logistic.TER.regression,L=6)
> lines(r.values,regression.values,lty=3)

(b) The easiest way to get a value for the standard error here is simply to
re-run the estimator multiple times and take the standard deviation.
This only captures the error associated with the fluctuations from one
run of the simulation to another, rather than the systematic errors
which come from biases in the estimator, etc.

10

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

topological entropy rate estimates

r

E
st

im
at

ed
 h

0

Figure 3: Three estimates of the topological entropy rate of the logistic map.
Solid line, difference estimate. Dashed line, division estimate. Dotted line,
regression estimate. The true value of h0 is 0 whenever the map goes to a limit
cycle, i.e., whenever r < 0.866 or so, suggesting that the division and regression
estimates may have a larger upward bias than the difference estimate.

11

