Chaos, Complexity, and Inference (36-462) Lecture 1

Cosma Shalizi

15 January 2008

イロン 不同 とくほう 不良 とう

About the paper

Course Goals

 \ast Learn about developments in dynamics and systems theory

- * Understand how they relate to fundamental questions in stochastic modeling (what is randomness? when can we use stochastic models?)
- * Think about how to do statistical infrence for dependent data
- * Get some practice with building and using simulation models
- * You have learned a lot about linear regression with
- independent samples and Gaussian noise
- * We are going to break all that

イロト イポト イヨト イヨト

Course Intro

Models and Simulations The Logistic Map as an Example Properties of Chaos

About the paper

Approach

- * Read, simulate, do a few calculations
- * No or almost no theorems
- * Much rigor necessarily skipped
- * A lot of reading this is deliberate
- * Move from lectures to discussions as the course goes

stat.cmu.edu/ cshalizi/462/syllabus.html

くロト (過) (目) (日)

2

About the paper

Grading

Homework one problem set every 2–3 weeks 1/2 of grade Class participation 1/6 of grade Final paper 10–20 pages, due on final exam date 1/3 of grade

イロト イポト イヨト イヨト 一座

About the paper

About the paper

Experiment in practicing writing about technical material Possibilities:

- Detailed review of some chunk of course material
- Exposition of one of the optional papers
- Critique of paper or material from the syllabus/literature
- Implementing your own model or applying a technique to data

Topics *must* be approved by me in advance You will turn in drafts for feedback well before final Exact dates TBD

イロト イポト イヨト イヨト 一座

About the paper

Topics

Dynamical Systems Jan. 15–Feb. 7 Models, dynamics, chaos, information, randomness Self-organization Feb. 12–Feb. 21 Self-organizing systems, cellular automata Heavy-tailed Distributions Feb. 26-Mar. 6 Examples, properties, origins, estimation, testing Inference from Simulations Mar. 18–Mar. 27 Severity; Monte Carlo; direct and indirect inference Complex Networks and Agent-Based Models Apr. 1–Apr. 29 Network structures & growth: collective phenomena; inference; real-world example Chaos, Complexity and Inference May 1

・ロト ・ 同ト ・ ヨト ・ ヨト

Models and Simulations

Model is a way of representing dependencies in some part of the world

Hope: tracing consequences in the model lets you predict reality

E.g., a map: tracing a route predicts what you will see and how you can get from A to B

Regressions are models of input/output

Simulating is tracing through consequences step by step in a particular case

Simulation is basic; analytical results are short-cuts to avoid exhaustive simulation (which may not be possible)

イロト イポト イヨト イヨト 一座

Dynamical Systems

We are particularly interested in *dynamical* models, which represent changes over time Components of a dynamical system

- state space : fundamental variables which determine what will happen
- update rule : rule for how the state changes over time, may be stochastic.

A.k.a. **map** or **evolution equations** or **equations** of **motion**:

프 · 프

observables : variables we actually measure; functions of state (+ possible noise)

initial condition: starting state trajectory or orbit: sequence of states over time

A work-horse example: the logistic map

state x, population of some animal, rescaled to some maximum value (so $x \in [0, 1]$)

map
$$x_{t+1} = 4rx_t(1 - x_t) \equiv f(x)$$

the *x* factor means that animals make more animals

1 - x factor means that too many animals keep there from being as many animals

r is control parameter in [0, 1] (following notation in Flake)

observable : we get to observe x directly, without noise

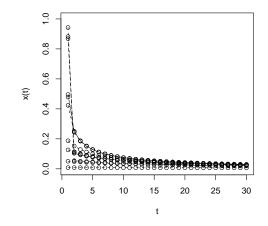
horrible caricature — we will see much better population models — but mathematically simple and it illustrates many important points

Set r = 0.25 and pick some random starting points First some code — R doesn't like iteration but we need it here

```
logistic.map <- function(x,r) {</pre>
  return (4 * r * x * (1 - x))
logistic.map.ts <- function (timelength,r,initial.cond=NULL) {</pre>
  x <-vector(mode="numeric",length=timelength)</pre>
  if(is.null(initial.cond)) {
    x[1] <-runif(1)
  } else {
    x[1] <-initial.cond
  }
  for (t in 2:timelength) {
      x[t] = logistic.map(x[t-1], r)
  return(x)
                                           ▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで
```

```
plot.logistic.map.trajectories <- function(timelength,</pre>
                                              num.trai,r) {
  plot(1:timelength,logistic.map.ts(timelength,r),lty=2,
       type="b",ylim=c(0,1),xlab="t",ylab="x(t)")
  i = 1
  while (i < num.traj) {</pre>
    i <- i+1
    x <- logistic.map.ts(timelength,r)</pre>
    lines(1:timelength,x,lty=2)
    points(1:timelength,x)
  }
plot.logistic.map.trajectories(30,10,0.25)
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●



All trajectories seem to be converging to the same value and a source of the same value and the same value a

36-462 Lecture 1

They are! They are going to a **fixed point** Solve:

$$x = 4(0.25)x(1-x) x = x - x^2 0 = x^2$$

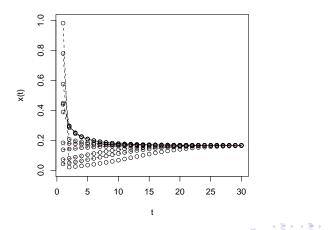
Not very interesting!

イロト 不同 とくほ とくほ とう

∃ 990

The Logistic Map as an Example

Let's change r let's say 0.3.



36-462

Lecture 1

∃ 990

Still converging but to a different value

$$x = 1.2x - 1.2x^{2}$$

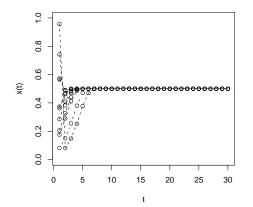
$$0 = 0.2x - 1.2x^{2}$$

$$0 = x - 6x^{2}$$

Solutions are obviously x = 0 and x = 1/6. Note all the trajectories converging to 1/6 (marked in red). Why do they like 1/6 more than 0? Can you show that 0 is always a fixed point?

くロト (過) (目) (日)

Crank up r again, to 0.5; fixed points at x = 0 and x = 0.5Again they like one fixed point but not the other

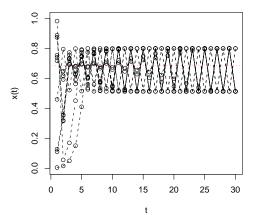


36-462

Lecture 1

-20

Now r = 0.8; the fixed points are x = 0 and x = 11/16



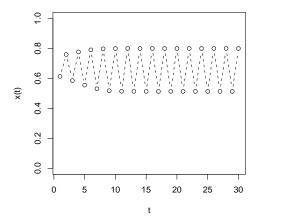
36-462 Lect

Lecture 1

토 🛌 🚊

Models and Simulations The Logistic Map as an Example

What the bleep? Let's look at just one trajectory



36-462

Lecture 1

ъ

æ

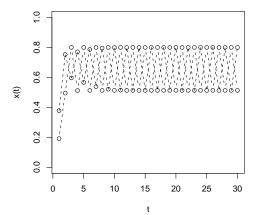
It's gone to a **cycle** or **periodic orbit**, of period two This means that there are two solutions to x = f(f(x)) which are not solutions of x = f(x)

$$x = 3.2[3.2x(1-x)][1-3.2x(1-x)]$$

Quartic equation, so four solutions — we know two of them (x = 0, x = 11/16) because they are fixed points; the other two are the points of the periodic cycle

イロト イポト イヨト イヨト 三連

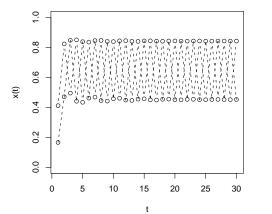
Phase of the cycle depends on the initial condition



36-462 Lecture 1

포카 포

Increasing r increases the **amplitude** of the **oscillation**

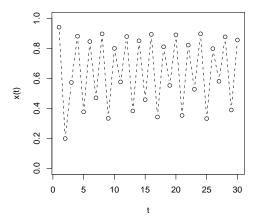


36-462 Lecture 1

-20

▶ < ≣ ▶ ...

Increasing r even more (0.9) I get period 4



36-462 Lecture 1

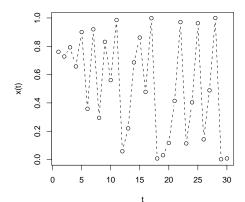
▶ ★ 臣 ▶ …

4 王

æ

You will work out more about the periodic orbits in the homework!

Now all the way to r = 1Not periodic *at all* and never converges — **chaos**



36-462 Lecture 1

문 🛌 🚊

Properties of Chaos

We will define "chaos" more strictly next time For now look at some characteristics

- Sensitive dependence on initial conditions
- Statistical stability of multiple trajectories
- Individual trajectories look representative samples (ergodicity)
- Short-term nonlinear predictability

ヘロト ヘアト ヘビト ヘビト

2

Sensitive dependence on initial conditions

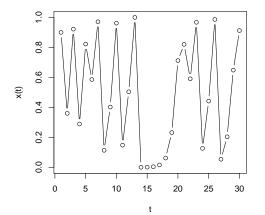
Deterministic: same initial point has the same future trajectory Continuity: can get arbitrarily small differences in trajectory by arbitrarily small differences in initial condition

BUT

Amplification of differences in initial conditions: if $|x_1 - y_1| = \epsilon$, then $|x_t - y_t| \approx \epsilon e^{\lambda t}$ for some $\lambda > 0$ Simplest SDIC: $x_{n+1} = \alpha x_n$ for $\alpha > 1$ More complicated behavior when SDIC isn't combined with run-away growth

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

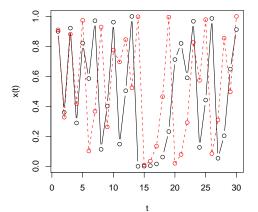
fix $x_1 = 0.90$



36-462 Lecture 1

▲目▶ ▲目▶ 目 のへの

compare $x_1 = 0.90$ to $y_1 = 0.91$; tracking to about t = 4

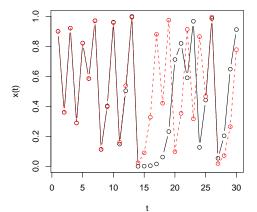


36-462 Lecture 1

< 臣 > < 臣 > ○

æ

compare $x_1 = 0.90$ to $y_1 = 0.90001$; tracking to about t = 12



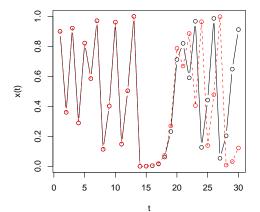
36-462

Lecture 1

< 臣 > < 臣 > ○

æ

$x_1 = 0.90$ vs. $y_1 = 0.9000001$; tracking to about t = 20

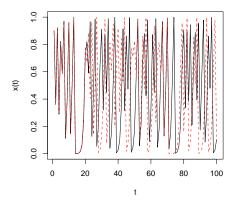


36-462

Lecture 1

▲문) ▲문) 문

extend both trajectories

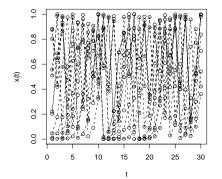


note that they get back together again around t = 60

36-462 Lecture 1

Statistical stability

Look at what happens to an **ensemble** of trajectories Seem to be more dots near the edges than in the middle



くロト (過) (目) (日)

3

This is true! To check it we need to evolve many trajectories in parallel

```
logistic.map.evolution <- function(timesteps,r,x) {
  t=0
  while (t < timesteps) {
    x <- logistic.map(x,r)
    t <- t+1
  }
  return(x)
}</pre>
```

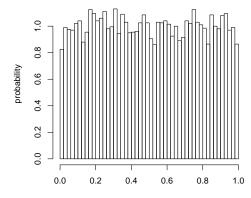
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Now run 10⁴ initial points, uniformly distributed

```
> x1=runif(10000)
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Histogram at t=1

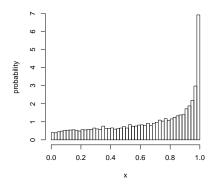


х

<ロト <回 > < 注 > < 注 > 、

æ

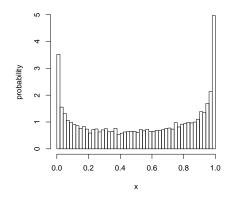
Histogram at t=2



Points near 0.5 get mapped towards 1, and the map function changes slowly there, but only points near 0 or 1 get mapped to 0, and the function changes rapidly in those places

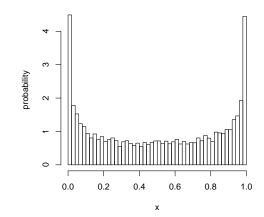
36-462 Lecture 1

Histogram at t=3



Many points which had gotten near 1 get mapped to near 0, but those near 1/2 are still mapped towards 1

Histogram at t=5



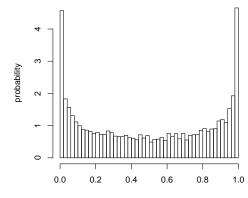
The two modes are getting balanced

36-462 Lecture 1

< • • • **•**

ъ

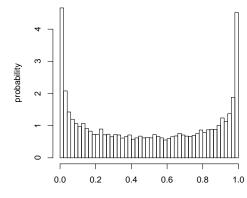
Histogram at t=10



х

イロン イロン イヨン イヨン

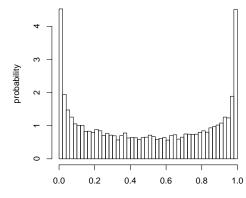
Histogram at t=20



х

<ロ> (日) (日) (日) (日) (日)

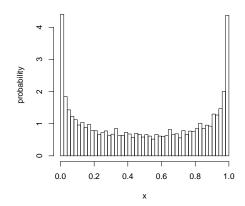
Histogram at t=100



х

<ロ> (日) (日) (日) (日) (日)

Histogram at t=1000



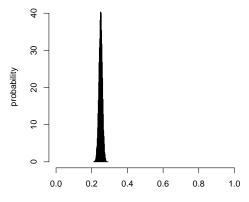
Distribution converges rapidly to an invariant distribution

36-462 Lecture 1

To see that let's try a different initial distribution, say a Gaussian with mean 0.25, s.d. 0.01, cutting out those outside [0, 1].

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

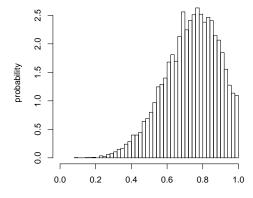
Histogram at t=1



х

三 うくぐ

Histogram at t=5



х

by $t \approx 10$ it looks like as though initial conditions were uniform

Histogram at t=10

С probability 2 0 0.0 0.2 0.4 0.6 0.8 1.0 х

36-462 Leo

Lecture 1

2

э

Even though individual trajectories fluctuate all over, the *distribution* converges The **invariant distribution** is in fact

$$p(x) = \frac{1}{\pi\sqrt{x(1-x)}}$$

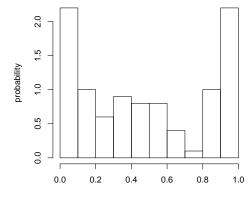
◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Ergodicity

If we do look at an individual trajectory, it looks similar to the whole ensemble of trajectories; here is $x_1 = 0.9$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

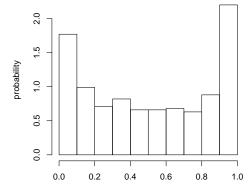
Histogram from trajectory to t=100



х

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ 差 − のへぐ

Histogram from trajectory to t=1000



х

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

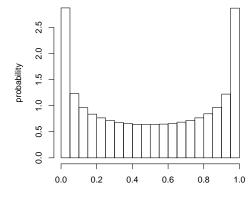
3.0 2.5 2.0 probability 1.5 1.0 0.5 0.0 Т 1.0 0.0 0.2 0.4 0.6 0.8

Histogram from trajectory to t=1e4

х

(中) (종) (종) (종) (종) (종)

Histogram from trajectory to t=1e6



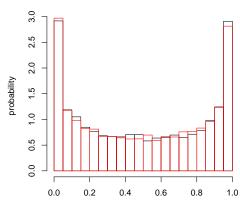
х

(中) (종) (종) (종) (종) (종)

looks pretty much like what you see from any one other trajectory (here is $y_1 = 0.91$ in red)

```
> hist(logistic.map.ts(1e6,1,0.9),freq=FALSE,xlab="x",
    ylab="probability",
    main="Histogram from trajectory to t=1e6",
    n=1001)
> hist(logistic.map.ts(1e6,1,0.91),freq=FALSE,xlab="x",
    ylab="probability",
    main="Histogram from trajectory to t=1e6",
    add=TRUE,border="red",n=1001)
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

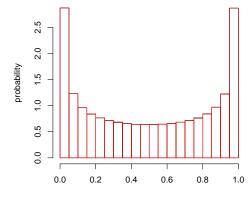


Histogram from trajectory to t=1e4

х

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Histogram from trajectory to t=1e6

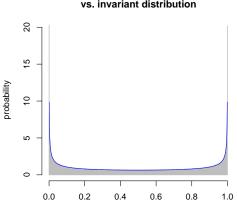


х

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

In every case they are converging on the exact invariant distribution

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●



Histogram from trajectory to t=1e6 vs. invariant distribution

х

₹ 9**9**€

Ergodicity means that almost any long trajectory looks like a representative sample from the invariant distribution We will define this more precisely later, and explore why it is so important for stochastic modeling

ヘロト ヘアト ヘビト ヘビト

2

Short-Term Nonlinear Predictability

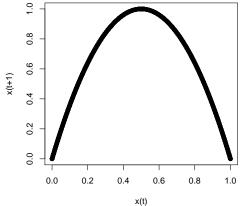
```
x.ts <- logistic.map.ts(1e6,1,0.9)</pre>
```

 x_{t+1} on x_t

only 10⁴ points so it plots in a reasonable amount of time

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Properties of Chaos



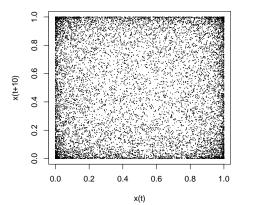
◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ 差 − のへぐ

Linear regression is not your friend:

```
> lm1 <- lm(x.ts[2:1e6] ~ x.ts[1:(1e6-1)])
> summary(lm1)
Call:
lm(formula = x.ts[2:1e+06] ~ x.ts[1:(1e+06 - 1)])
Residuals:
      Min
           10 Median 30
                                               Max
-0.5005069 -0.3535795 0.0005158 0.3531829 0.4999921
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4995090 0.0006124 815.687 <2e-16 ***
x.ts[1:(1e+06 - 1)] 0.0009979 0.0010000 0.998 0.318
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3536 on 999997 degrees of freedom
Multiple R-Squared: 9.958e-07, Adjusted R-squared: -4.188e-09
F-statistic: 0.9958 on 1 and 999997 DF, p-value: 0.3183 ( = ) = 0.000
```

36-462 Lecture 1

x_{t+10} on x_t The joint distribution here is very close to being independent

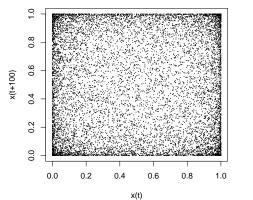


36-462

Lecture 1

 $\Xi \rightarrow$ 3

x_{t+100} on x_t Even closer to independence



. .

프 에 에 프 어

æ

36-462 Lecture 1

... except that x_{t+k} is a *determistic function* of x_t , no matter what *k* is, so how can they be independent?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □