Chaos, Complexity, and Inference (36-462) Lecture 3

Cosma Shalizi

22 January 2008

Long-run behavior and inference

In most systems, long-run behavior is dominated by **attractors** Aspects:

Geometry Where do trajectories go?

Probability What is the long-run distribution?

Attractors: Geometry

Generalize from stable fixed points and limit cycles Attractor \approx stable invariant set which cannot be split into smaller stable invariant sets

"Attractor" because nearby points move closer towards it Requires that the map compress state space (on balance; can expand in some directions)

so Arnold cat map has no attractors

Examples: The points in the bifurcation diagram are \approx the attractors for different values of r

(Why only \approx ?)

More examples: Henon map, Lorenz system

Henon Map

$$X_{t+1} = a - x_t^2 + by_t$$

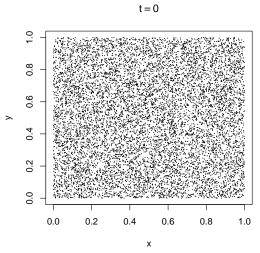
$$y_{t+1} = x_t$$

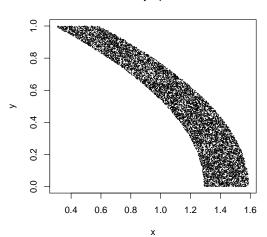
Two dimensions — y acts like a memory for x

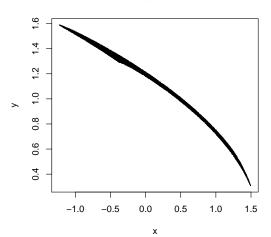
Important general fact about multidimensional dynamics

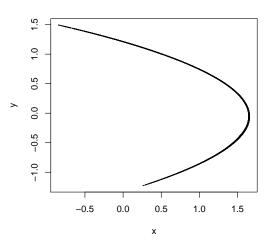
n dimension is equivalent to having a memory going back n time-steps

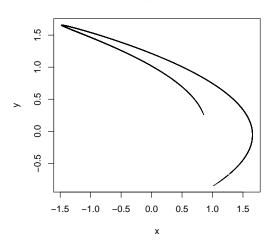
What happens with the Henon map? a = 1.29, b = 0.3

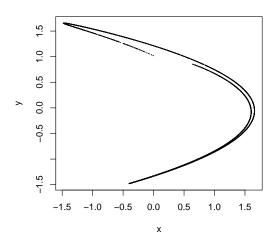


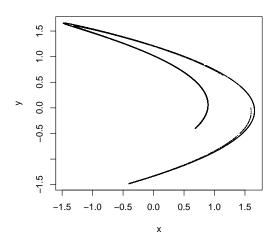


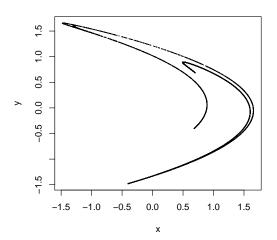


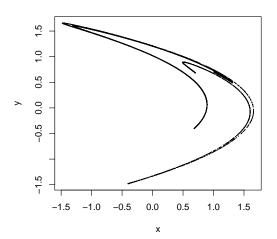


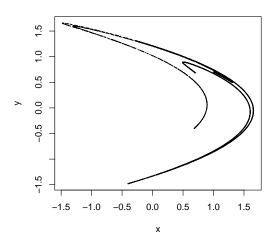


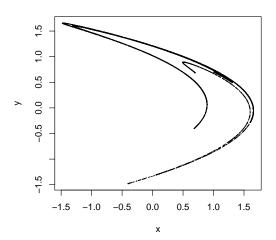


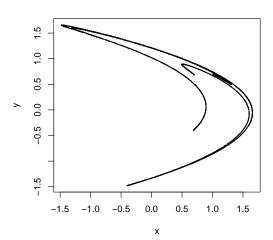




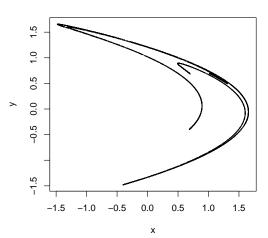


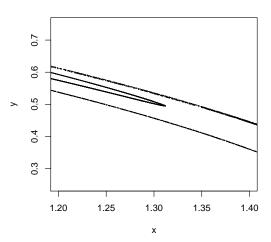


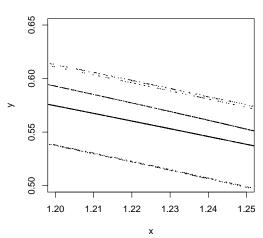




take the attractor and zoom in



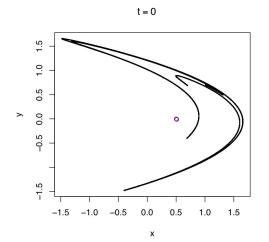


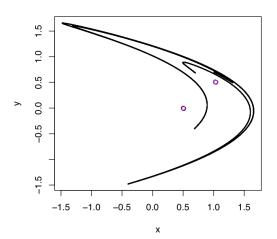


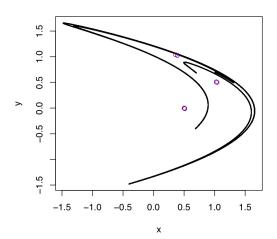
contraction \Rightarrow typically, attractors occupy a vanishingly small fraction of the state space sometimes a well-behaved geometric object (points, curves) this attractor is "strange": fractal (=fractional-dimensional), self-similar chaotic attractors are typically strange

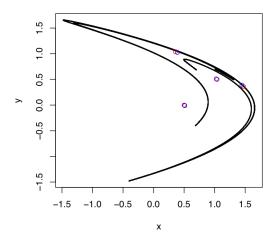
stretch and fold directions away from the attractor: stable; move back towards attractor directions along the attractor: (possibly) unstable

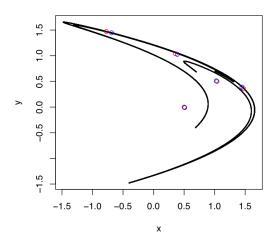
red:
$$(x_0, y_0) = (0.5, 0.0)$$
; blue: $(x_0, y_0) = (0.51, -0.01)$

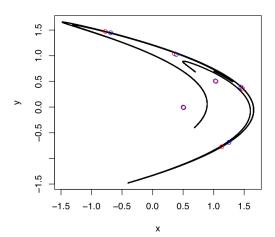


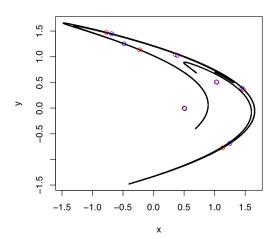


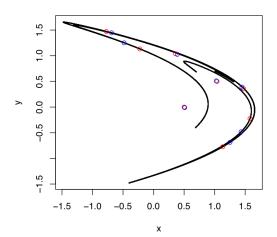


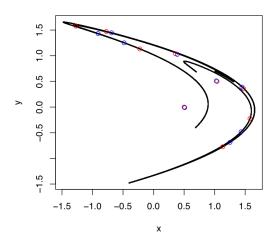


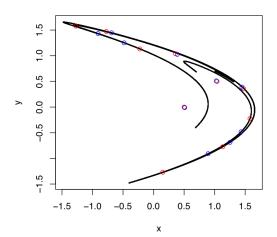


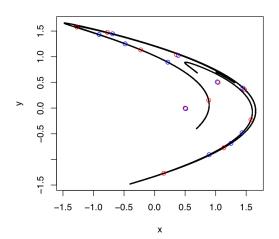


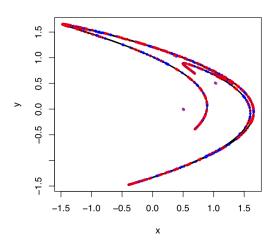












LORENZ SYSTEM

$$\frac{dx}{dt} = ay - ax$$

$$\frac{dy}{dt} = bx - y - xz$$

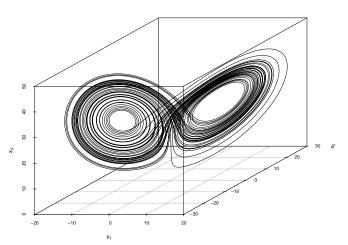
$$\frac{dz}{dt} = xy - cz$$

(more usual notation $a = \sigma$, $b = \rho$, $c = \beta$)

Crude approximation to tricky nonlinear model of fluid flow Sensitive dependence on initial conditions discovered due to truncation

use
$$a = 10$$
, $b = 28$, $c = 8/3$

Lorenz Attractor: state space



Basin of attraction: all the initial conditions which converge on an attractor

We have only seen systems with one attractor but there can be many

another kind of unpredictability: points very near the boundary between 2 basins of attraction

Lyapunov Exponents

p dimensional state-space

Stable and unstable directions locally at any point

Also rates of exponential contraction/expansion along them so starting at x an initial separation of δ along some direction becomes a separation of $\delta e^{\Lambda(x)t}$ — not necessarily along that direction

There is always a most unstable direction $e_1(x)$, rate $\Lambda_1(x)$

Then a next most unstable direction $\perp e_1(x)$, rate $\Lambda_2(x)$

... finally a most stable direction $e_p(x)$, rate $\Lambda_p(x)$

Pick a trajectory; $\lambda_i \equiv \text{time-average of } \Lambda_i(x)$

(How do we know that's well-defined?)

 λ_i are the **Lyapunov exponents**

Practically, "chaos" means an attractor, and $\lambda_1 > 0$

Attractors: Probability

probability of states (invariant distributions) probability of trajectory segments (correlations) linked to geometry via instabilities in the attractor

Invariant distributions

Invariant distributions are (generally) confined to invariant sets — stable or unstable

Natural or **physical** invariant distributions are confined to attractors

Periodic attractors have uniform invariant distributions Strange attractors generally have non-uniform invariant distributions

If multiple attractors then multiple physical invariant distributions

Volumes in state-space keep shrinking \Rightarrow attractor is actually infinitely small compared to whole state space (points vs. line, lines vs. plane, etc., or weird fractal shapes) Invariant distributions are generally *not smooth at all* Usually no simple parametric form (r = 1 logistic map is an exception)

Kernel density estimation can work but too much smoothing is very misleading!

(ditto Gaussian kernels)

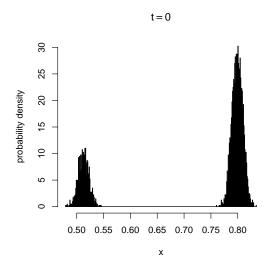
For a known 1D map, see [1]

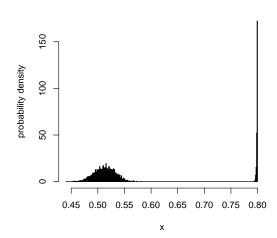
Ensembles converge to distributions on the attractor, not necessarily invariant ones

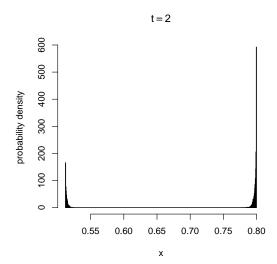
Example: stable 2-cycle; 3/4 of ensemble near one point, 1/4 near the other; will converge to a distribution on the cycle, but won't re-balance the probability

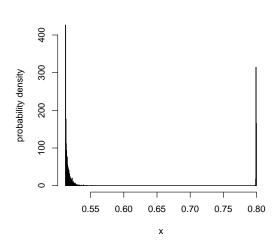
logistic map, r = 0.8, cycle from 0.5130445 to 0.7994555 and back

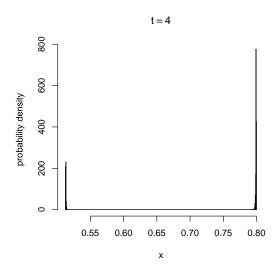
initial ensemble: two Gaussians centered at the cycle points, $\sigma = 0.01$, 4000 point, 3/4 near higher point

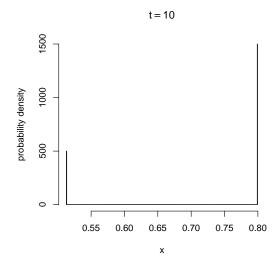


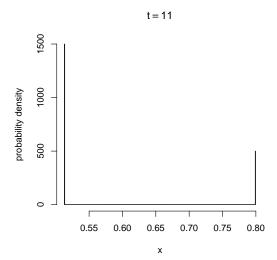


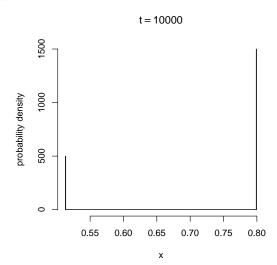


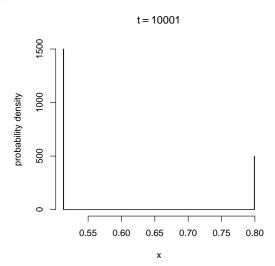












Ensemble: lopsided, alternates forever, oscillations never diminish

Individual trajectory's distribution: balanced, any initial bias diminishes steadily over time

Time-averaged ensemble looks like time-averaged single-trajectory distribution

Notice that there is no instability *within* the attractor here If there was, we might expect ensembles to look more like individual trajectories

Mixing and decay of correlations

Mixing: As $\tau \to \infty$, X_t becomes independent of $X_{t+\tau}$

Equivalent to

Decay of correlations: for any reasonable functions g, h,

$$\operatorname{cov}[g(X_t), h(X_{t+\tau})] \xrightarrow[\tau \to \infty]{} 0$$

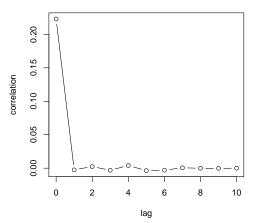
Equivalent to

Statistical stability: any initial ensemble converges to the natural invariant distribution

Probabilists: this is weak convergence

```
plot.decay.of.correlations = function(from=0,to=10,ts,...) {
    n=length(ts)
    rho = vector(mode="numeric",length=(to-from+1))
    for (t in from:to) {
        rho[t] = cor(cos(ts[1:(n-t)]),sin(ts[(1+t):n]))
    }
    plot(from:to,rho,xlim=c(from,to),xlab="lag",ylab="correlatio")
}
```

Logistic map with r = 1, $g(x) = \cos x$, $h(x) = \sin x$, time series of length 10^5



 $\text{Mixing} \Rightarrow \text{ergodicity}$

Terminological confusion: an "ergodic Markov chain" is really a *mixing* Markov chain

Attractors can be non-mixing (e.g., periodic cycles)

Non-attractors can be mixing (e.g., cat map)

Chaotic attractors are (generally) mixing

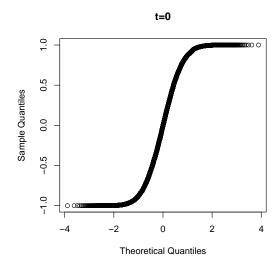
(hierarchy of ergodic properties — see [2, 3] for more)

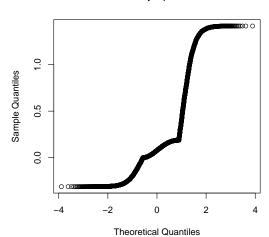
Some uses of mixing

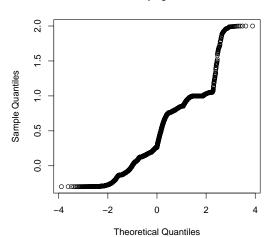
If $\tau \gg$ mixing time, X_t , $X_{t+\tau}$, $X_{t+2\tau}$, . . . are \approx independent (sampling)

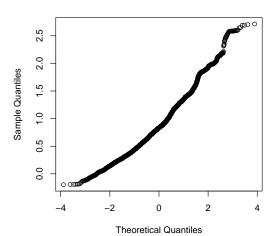
"Forgetting" of initial conditions

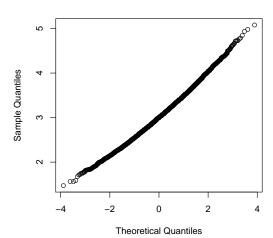
Central limit theorem: if correlations decay fast enough, time averages $*\sqrt{t}$ become Gaussian [4]











- [1] P.-M. Binder and David H. Campos. Direct calculation of invariant measures for chaotic maps. *Physical Review E*, 53:R4259–R4262, 1996. URL
 - http://link.aps.org/abstract/PRE/v53/pR4259.
- [2] Michael C. Mackey. *Time's Arrow: The Origins of Thermodynamic Behavior*. Springer-Verlag, Berlin, 1992.
- [3] Andrzej Lasota and Michael C. Mackey. Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics. Springer-Verlag, Berlin, 1994. First edition, Probabilistic Properties of Deterministic Systems, Cambridge University Press, 1985.
- [4] Murray Rosenblatt. A central limit theorem and a strong mixing condition. *Proceedings of the National Academy of Sciences (USA)*, 42:43–47, 1956. URL http://www.pnas.org/cgi/reprint/42/1/43.

