Chaos, Complexity, and Inference (36-462)

Lecture 3

Cosma Shalizi

22 January 2008

36-462 Lecture 3



Long-run behavior and inference
In most systems, long-run behavior is dominated by attractors
Aspects:

Geometry Where do trajectories go?
Probability What is the long-run distribution?
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Attractors: Geometry

Generalize from stable fixed points and limit cycles
Attractor ~ stable invariant set which cannot be split into
smaller stable invariant sets

“Attractor” because nearby points move closer towards it
Requires that the map compress state space (on balance; can
expand in some directions)

so Arnold cat map has no attractors

Examples: The points in the bifurcation diagram are ~ the
attractors for different values of r

(Why only ~ ?)

More examples: Henon map, Lorenz system
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Henon Map

Xip1 = a—x2+by

Y1 = X

Two dimensions — y acts like a memory for x
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Important general fact about multidimensional dynamics

n dimension is equivalent to having a memory going back n
time-steps
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Geometry

What happens with the Henon map? a=1.29, b =0.3
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Geometry
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Geometry

t=10
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take the attractor and zoom in
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Geometry

t=1000

0.7

T T T T I
1.20 1.25 1.30 1.35 1.40

Lecture 3



Geometry
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contraction = typically, attractors occupy a vanishingly small
fraction of the state space

sometimes a well-behaved geometric object (points, curves)
this attractor is “strange”: fractal (=fractional-dimensional),
self-similar

chaotic attractors are typically strange
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stretch and fold

directions away from the attractor: stable; move back towards
attractor

directions along the attractor: (possibly) unstable
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red: (xo, ¥o) = (0.5,0.0); blue: (xo, ¥o) = (0.51,—-0.01)
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Geometry
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Geometry
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Geometry
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Geometry
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Geometry
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Geometry
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Geometry
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Geometry
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Geometry
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LORENZ SYSTEM

& gy ax
a ~ Y

ay

g bx —y — xz
9z _ Xy — ¢z
a — Y

(more usual notationa=o0, b = p, c = )

Crude approximation to tricky nonlinear model of fluid flow
Sensitive dependence on initial conditions discovered due to
truncation
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Geometry

usea=10,b=28,c=28/3

Lorenz Attractor: state space
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Basin of attraction: all the initial conditions which converge on
an attractor

We have only seen systems with one attractor but there can be
many

another kind of unpredictability: points very near the boundary
between 2 basins of attraction
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Lyapunov Exponents

p dimensional state-space

Stable and unstable directions locally at any point

Also rates of exponential contraction/expansion along them
so starting at x an initial separation of § along some direction
becomes a separation of §&\¥)! — not necessarily along that
direction

There is always a most unstable direction e{(x), rate A¢(x)
Then a next most unstable direction L eq(x), rate Ax(x)

... finally a most stable direction ep(x), rate Ap(x)

Pick a trajectory; \; = time-average of A;(x)

(How do we know that’s well-defined?)

A; are the Lyapunov exponents

Practically, “chaos” means an attractor, and A\ > 0
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Probability

Attractors: Probability

probability of states (invariant distributions)
probability of trajectory segments (correlations)
linked to geometry via instabilities in the attractor
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Probability

Invariant distributions

Invariant distributions are (generally) confined to invariant sets
— stable or unstable

Natural or physical invariant distributions are confined to
attractors

Periodic attractors have uniform invariant distributions

Strange attractors generally have non-uniform invariant
distributions

If multiple attractors then multiple physical invariant distributions
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Probability

Volumes in state-space keep shrinking = attractor is actually
infinitely small compared to whole state space

(points vs. line, lines vs. plane, etc., or weird fractal shapes)
Invariant distributions are generally not smooth at all

Usually no simple parametric form (r = 1 logistic map is an
exception)

Kernel density estimation can work but too much smoothing is
very misleading!

(ditto Gaussian kernels)

For a known 1D map, see [1]
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Probability

Ensembles converge to distributions on the attractor, not
necessarily invariant ones

Example: stable 2-cycle; 3/4 of ensemble near one point, 1/4
near the other; will converge to a distribution on the cycle, but
won'’t re-balance the probability

logistic map, r = 0.8, cycle from 0.5130445 to 0.7994555 and
back

initial ensemble: two Gaussians centered at the cycle points,
o = 0.01, 4000 point, 3/4 near higher point
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Probability
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Probability
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Probability
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Probability
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Probability

probability density
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Probability
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Probability
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Probability
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Probability
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Probability

Ensemble: lopsided, alternates forever, oscillations never
diminish

Individual trajectory’s distribution: balanced, any initial bias
diminishes steadily over time

Time-averaged ensemble looks like time-averaged
single-trajectory distribution

Notice that there is no instability within the attractor here

If there was, we might expect ensembles to look more like
individual trajectories
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Probability

Mixing and decay of correlations

Mixing: As 7 — oo, X; becomes independent of X; -
Equivalent to

Decay of correlations: for any reasonable functions g, h,

cov[g(Xt), h(Xt1r)] —— 0

Equivalent to

Statistical stability: any initial ensemble converges to the
natural invariant distribution

Probabilists: this is weak convergence
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Probability

plot.decay.of.correlations =
n=length(ts)
rho =

function (from=0,to=10,ts, ...) {

vector (mode="numeric", length=(to-from+1))
for (t in from:to) {

rho[t] = cor(cos(ts[l:(n-t)]),sin(ts[(1l+t):n]))

}

plot (from:to, rho, xlim=c (from, to),xlab="1lag",ylab="correlatio
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Probability

Logistic map with r = 1, g(x) = cos x, h(x) = sin x, time series
of length 10°
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Probability

Mixing = ergodicity

Terminological confusion: an “ergodic Markov chain” is really a
mixing Markov chain

Attractors can be non-mixing (e.g., periodic cycles)
Non-attractors can be mixing (e.g., cat map)

Chaotic attractors are (generally) mixing

(hierarchy of ergodic properties — see [2, 3] for more)
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Probability

Some uses of mixing

If 7 > mixing time, X, Xi+r, Xi12-, ... are ~ independent
(sampling)

“Forgetting” of initial conditions

Central limit theorem: if correlations decay fast enough, time
averagesx\/t become Gaussian [4]

36-462 Lecture 3



Probability

Sample Quantiles
0
l

Theoretical Quantiles
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Probability

Sample Quantiles
5

Theoretical Quantiles
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Probability
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Probability
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Probability
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