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Symbolic dynamics Reducing continuous time series to
sequences of discrete symbols

Stochastic processes How to get random sequences from
deterministic dynamics

Reading I should have assigned: [1]
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Symbolic Dynamics
Start with our favorite dynamical system, with a continuous
state St and a map Φ

St+1 = Φ(St)

Partition B: divide the state space up into non-overlapping
cells, B0, B1, . . . Bk−1
b(St) = label (symbol) for the cell St is in
= Xt (say)
symbol sequence X

X∞1 = b(S1), b(S2), b(S3), . . .

= b(S1), b(Φ(S1)), b(Φ(2)(S1)), . . .

i.e., given initial condition S1 and partition B, symbol sequence
X∞1 is fixed
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The Shift Map
Seen symbols, what about the dynamics?
Shift map Σ

Σ(X∞1 ) = X∞2

Σ shifts the symbol sequence one place over
Σ(k) shifts the symbol sequence k places
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Why do this?
1. Model of finite-resolution measurements
2. “Continuous math is hard; let’s go discretize”

Discrete-math mathematical tools
Probability tools

3. Sometimes involves no real loss
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Refinement of partitions
Subdivide cells according to which symbol they will give us

From [2, p. 71]
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In math, work out Φ−1Bi for each cell Bi
Now the new partition B2 is all the sets Bi ∩ Φ−1Bj
Refinement: knowing the cell in B2 tells you the cell in B, but
not the other way
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Generating Partitions
A partition is generating if the cells of B, B2, B3, . . . keep
getting smaller forever
or: the infinite symbol sequence X∞1 corresponds to a unique
initial condition S1
then we are back in change-of-coordinates land:

St
Φ−−−−→ St+1

b

y b

y
X∞t

Σ−−−−→ X∞t+1

Example: a generating partition for the logistic map is
B0 = [0, 0.5), B1 = [0.5, 1].
Write the symbols as L, R so they don’t get mixed up with other
things
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Where did all the details go?
Most of these maps get pretty complicated pretty quickly
e.g. try writing out Φ20 for the logistic map
but Σ20 is as trivial as Σ
Trick: the complexity has moved out of the dynamical map to
the state space — now the space of symbol sequences — and,
possibly, probability distributions on the sequence space
This lets us use different mathematical tools
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When are there generating partitions?
For one-dimensional maps, make a generating partition by
putting boundaries at the “critical” points, i.e. maxima, minima,
vertical asymptotes
For higher-dimensional maps, there are fewer general rules;
don’t always exist
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Estimating generating partitions
“Symbolic false nearest neighbors” [3]: if you have a generating
partition, then close symbol sequences should only come from
close points in the state-space

1 Reconstruct your state space
2 Start with an initial partition
3 Calculate distances among symbols sequences and

distances among state points
4 Find “false symbolic neighbors”
5 Tweak partition boundaries to reduce the number of false

neighbors
6 Iterate to convergence

Another approach (“symbolic shadowing”): similar symbol
sequences should imply close trajectories in state space [4]
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Discrete Stochastic Processes
... from fully deterministic continuous dynamics
If S1 has a distribution, then so do X1 = b(S1), X2 = b(Φ(S1)),
. . ., Xt = b(Φ(t−1)(S1)), . . .
In general the Xt will be dependent on each other
⇒ symbol sequences are stochastic processes
Studying these processes can tell us about the dynamical
system
Symbolic dynamics tells us about how stochastic processes
arise
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Again with the Logistic Map
r = 1
B0 = [0, 1

2), B1 = [1
2 , 1]

so Xt are binary variables (values L, R)
S1 in invariant distribution
Claim: X∞1 is a sequence of IID, with P(Xt = L) = 0.5
Translation: the logistic map gives us perfect coin-tossing
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The usual argument for this

1 smoothly change coordinates to go from the logistic map,
with state St , to the tent map, with state Rt

2 this changes the invariant distribution to be the uniform
distribution

3 leaves the generating partition alone
4 write Rt as a binary number
5 b(Rt) = R if and only if the first digit of Rt is “1”
6 b(Rt+1) = R if the first digit of Rt was “1” and its second

digit was “0”, or if the first digit was “0” and the second digit
was “1”; etc. for other two-digit combinations

7 b(Rt+1) is independent of b(Rt)

8 in fact b(Rt1), b(Rt2), b(Rt3), . . . are all independent
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But “why think when you can do the experiment?”
EXERCISE 1: Write a program to simulate the symbolic
dynamics of the logistic map with r = 1. Tabulate the
frequencies of sub-sequences of length 2n. Test whether
X t+n−1

t is independent of X t−1
t−n .
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Independent symbols is an extreme case
More general, dependence across symbols
Two aspects:

absolute restrictions on what sequences can appear
(today)
relative frequency dependence (next lecture)
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Forbidden Sequences
Take r = 0.966; this is moderately chaotic (Lyapunov exponent
≈ 0.42)
You can verify either by calculation or simulation that “LLL”
never appears
nor “LLRR”
nor infinitely many others
These are all forbidden
Those which do appear are allowed
Also say allowed and forbidden words (because they’re made
from letters)
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Topological Entropy Rate
Every allowed word of length n implies a word of length n − 1
⇒ At least as many longer words as shorter words
Wn = number of allowed words of length n

h0 ≡ lim
n→∞

1
n

log Wn

Measures the exponential growth in the number of allowed
patterns as their length grows
h0 ≥ 0
Think of eh0 as saying, roughly, how many choices there are for
ways of continuing the typical sequence
h0 > 0 is necessary for sensitive dependence on initial
conditions
fixed points or periodicity ⇒ h0 = 0
With r = 1, Wn = 2n so h0 = log 2, thus two possible
continuations
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Careful: h0 = 0 can mean only one possible sequence, or just
sub-exponential growth
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EXERCISE 2: Write a program to calculate the topological
entropy rate for the logistic map at any r
EXERCISE 3: How would you put a standard error on your
estimate of h0?
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Languages
A word is a finite sequence of symbols
A (formal) language is a set of allowed words
A (formal) grammar is a collection of rules which give you all
and only the allowed words
blame the linguists for mixed metaphor
See [2] for more on how this applies to dynamical systems
See [5] for statistical aspects
See [6, 7] for good introductions to formal languages
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Regular expressions
Simplest sorts of formal grammars; used in Unix, Perl, etc.
Basic operations:

literals e.g. L, R, etc., depending on alphabet; also “none
of the above”, abbreviated ε

alternation “this or that”; make an arbitrary choice from two
sets
e.g. “L|R” means “either L or R”

concatenation string together
L(L|R) means “L, followed by either L or R”,
means “LL or LR”

“star”, repetition Repeat something zero or more times
“L∗” matches “ε, L, LL, LLL, . . .”
“(L(L|R))∗” matches
ε, LL, LR, LLLL, LLLR, LRLL, LRLR, . . .
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(LR)∗ a period-two sequence
forbidden words include: RR, LL

(L(L|R))∗ “odd-place symbols must be ‘L’, even-place can be
L or R”
or: “every other symbol must be ‘L’ ”
forbidden words include: RR
periodicity here is hidden

(LRR(RR)∗)∗ = (L(RR)+)∗ blocks of Rs, of even length,
separated by isolated Ls
forbidden words include: LL, LRRRL

(L∗(RR)∗)∗ even-length blocks of Rs, separated by blocks of
Ls of arbitrary length
forbidden words include: LRRRL

Not describable by any regular expression: every “(” must be
followed eventually by a matching “)”
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Expressive Machinery
Basic theorem [8]: every regular expression can be
implemented by a machine (“automaton”) with a finite memory;
finite automata can only implement regular expressions
“implement”: check if words match the expression, or generate
words which match; equivalent
think about generating, it feels more like dynamics
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Machines as Directed Graphs
write machines as circle-and-arrow diagrams, directed graphs

circles “states”; fixes possible future sequences
for symbolic dynamics, each state in the diagram
is a set of states in the original, continuous
state-space

arrows go from circle to circle, labeled with symbols from
the alphabet

paths generate words: write down the labels hit following that
path
concatenation ≈ following arrows
alternation ≈ more than one out-going arrow from a circle
star ≈ loops
should distinguish allowed “start” and “stop” states
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Some Machines and Expressions

1 2
L

R
1 2
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R

L

(LR)∗ (L(L|R))∗
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R

L
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(L(RR)+)∗ (L∗(RR)∗)∗
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Sofic Systems
Sofic: only finitely many circles (also called finitary)
Finite type: to determine what symbol is possible next, need
only look back k symbols, for some fixed k
Strictly sofic: sofic, but not of finite type
(LR)∗ is of finite type
(L(L|R))∗, (L(RR)∗)∗ and (L∗(RR)∗)∗ are strictly sofic
These are the skeletons of stochastic processes
Finite type ≈ finite-order Markov chains
Strictly sofic ≈ hidden Markov, long-range correlations
next time: some statistics!
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