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The Story So Far
Deterministic dynamics can produce stable distributions of
behavior
Discretizing with partitions gives symbol sequences
These need a statistical description

Inference for Markov chains
Inference for higher-order Markov chains
Inference for stochastic machines
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Likelihood for Markov chains
Basic case: m states/symbols, transition matrix p0 unknown
Parameters: matrix entries pij
observe xn

1 ≡ x1, x2, . . . xn
Th probability of this sequence is

Pr (X n
1 = xn

1 ) = Pr (X1 = x1)
n∏

t=2

Pr (Xt = xt |Xt−1 = xt−1)

(by Markov property)
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Re-write in terms of pij

L(P) = Pr (X1 = x1)
n∏

t=2

pxt−1xt

Define Nij ≡ number of times i is followed by j in X n
1

L(P) = Pr (X1 = x1)
m∏

i=1

m∏
j=1

pnij
ij

L(P) = log Pr (X1 = x1) +
∑
i,j

nij log pij

Maximize as a function of all the pij
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Solution:
p̂ij =

nij∑
j nij

What about x1? Use conditional likelihood to ignore it!
By the ergodic theorem,

Nij

n
→ p0

i p0
ij

(where did p0
i come from?) also∑

j

Nij

n
→ p0

i

so
p̂ij → p0

ij

as we’d like
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Parametrized Markov Chains

May not be able to vary all the transition probabilities
separately
May have an actual theory about how the transition
probabilities are functions of underlying parameters

In both cases, P is really P(θ), with θ the r -dimensional vector
of parameters
Again, maximize the likelihood:

∂L
∂θu

=
∑

ij

∂L
∂pij

∂pij

∂θu
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For this to work, we need Guttorp’s “Conditions A”
which he got from [1, p. 23]

1 The allowed transitions are the same for all θ
technical convenience

2 pij(θ) has continuous θ-derivatives up to order 3
authorizes Taylor expansions to 2nd order
can sometimes get away with just 2nd partials

3 The matrix ∂pij/∂θu always has rank r
no redundancy in the parameter space

4 The chain is ergodic without transients for all θ
trajectories are representative samples
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Assume all this; also, θ0 = true parameter value
Then:

1 MLE θ̂ exists
2 θ̂ → θ0 (consistency)
3 Asymptotic normality:

√
n

(
θ̂ − θ0

)
 N (0, I−1(θ0))

with expected (Fisher) information

Iuv (θ) =
∑

ij

pi(θ)

pij(θ)

∂pij

∂θu

∂pij

∂θv
= −

∑
ij

pi(θ)pij(θ)
∂2 log pij(θ)

∂θu∂θv

(2nd equality is not obvious)
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Error estimates based on I(θ0) are weird: if you knew θ0, why
would you be calculating errors?
Option 1: use I(θ̂)
Option 2: use the observed information

Juv = −
∑

ij

nij

n
∂2 log pij(θ̂)

∂θu∂θv

(Guttorp’s Eq. 2.207, but he’s missing the sum over state pairs.)
Notice that

Juv = −1
n

∂2L(θ̂)

∂θu∂θv

nJ is how much the likelihood changes with a small change in
parameters from the maximum; J−1 is how much we can
change the parameters before the change in likelihood is
noticeable
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Alternative error estimates
Can get standard errors and confidence intervals from these
Gaussian distributions
but they’re asymptotic
Generally no simple formulas for the finite-sample distributions
This doesn’t matter (much) because we can simulate
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Parametric bootstrapping

1 Have real data xn
1 , get parameter estimate θ̂

2 Simulate from θ̂, get fake data Y n
1 (“bootstrap”)

3 Estimate from faked data, get θ̃

Approximately,
(θ̂ − θ0) ∼ (θ̃ − θ̂)

We want the distribution on the left; we can get arbitrarily close
to the distribution on the right, by repeating steps 2 and 3 as
many times as we want
(Connections between bootstrap and maximum likelihood: [2])
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Higher-order Markov Chains
Markov property: for all t ,

Pr
(

Xt |X t−1
1

)
= Pr (Xt |Xt−1)

k th-order Markov: for all t ,

Pr
(

Xt |X t−1
1

)
= Pr

(
Xt |X t−1

t−k

)
In a Markov chain, the immediate state determines the
distribution of future trajectories
Extended chain device: Define Yt = X t+k−1

t
Y t

1 is a Markov chain
The likelihood theory is thus exactly the same, only we need to
condition on the first k observations
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Hypothesis Testing
Likelihood-ratio testing is simple, for nested hypotheses
θ̂small = MLE under the smaller, more restricted hypothesis,
dsmall degrees of freedom
θ̂big = MLE under larger hypothesis, d.o.f. dbig
If the smaller hypothesis is true,

2[L(θ̂big)− L(θ̂small)] χ2
dbig−dsmall

Everything is nested inside the non-parameterized estimate; it
has m(m − 1) degrees of freedom for a first-order chain,
mk (m − 1) for a k -order chain.
fixed transition matrix, or fixed value of θ0, has 0 d.o.f.
lower-order chains are nested inside higher-order chains, so
you can test for order restrictions
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Partially-observable Markov chain process where we observe
a random function of a Markov chain

Xt = f (St , Nt), St Markov, Nt ⊥ St

Hidden Markov model observation Xt independent of
everything else given state St

Stochastic finite automaton Xt plus St uniquely determine St+1
a.k.a. chain with complete connections

HMMs and SFAs are both special cases of POMCs
HMMs are more common in signal processing
SFAs are more useful for dynamics, and easier to analyze:
stochastic counterparts to the machines from last lecture
Good intros to HMMs: [3, 4]
Good advanced reference on HMMs: [5]
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Specification of an SFA:
1 Set of states S, alphabet of symbols A
2 Transition function T (i , j) = state reached starting from i on

symbol j
3 Emission probabilities Qij = probability of state i producing

symbol j
4 Initial distribution over states

Graph: circles and arrows, as before; add probabilities Qij to
the arrows
Skeleton or structure of SFA: just (1) and (2)
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Likelihood theory for SFA Observe xn
1

Assume skeleton is known, initial state s1 is known
Then state sequence is known recursively: st+1 = T (st , xt)
Log-likelihood:

L(Q) =
n∑

t=1

log Qst xt =
∑
i∈S

∑
j∈A

nij log Qij

with Nij = emission counts
Once again,

Q̂ij =
nij∑

j∈A nij

and once again
Q̂ij → Q0

ij
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If the initial state is not known:
Likelihood becomes weighted sum of state-conditional
likelihoods; somewhat ugly but numerically maximizable
Synchronization: Write st+1 = T (s1, x t

1) — abuse of notation
Skeleton synchronizes if, after some τ , T (s1, xτ

1 ) = T (s′1, xτ
1 )

or, xτ
1 is enough to pin down the state, never mind starting point

All finite-type processes synchronize (τ = order of process)
Many strictly sofic processes synchronize after a random time
(e.g. all three examples from Lecture 5)
Can do likelihood conditional on synchronization
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What do if the skeleton is not known?
1. Try multiple skeletons, cross-validate
2. Try multiple skeletons, use BIC

BIC = L(θ̂)− d
2

log n

Hand-waving:
Large n ⇒ θ̂ Gaussian around θ0, s.d. ∝ n−1/2

Parameters with more impact on likelihood more precisely
estimated
−d

2 log n comes out as expected over-fitting
BIC is consistent for estimating the order of Markov chains
3. Other model-selection tests/heuristics (e.g. bootstrap tests)
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Model Discovery/Construction
Systematically build a model to match the data
Basic idea for Markov chains goes back to John Foulkes’s
Janet in the 1950s [6]
Each state contains a word s; a sequence of observations
should land us in that state if they end with that word
For each state, keep track of the conditional distribution
Pr (Xt |s).
Also keep track of Pr (Xt |as), for each one-symbol extension as.
If Pr (Xt |s) differs significantly from Pr (Xt |as), split into multiple
states.
Keep going until no more splits are called for.
Result: variable-length Markov chain
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Variable-length Markov chains are equivalent to higher-order
Markov chains — why bother?
Computation and comprehensibility: tree representation
Statistics: fewer degrees of freedom (m − 1 per state), which
means more efficient

36-462 Lecture 6



Likelihood for Markov chains
Beyond Markov Chains

References

AAAB

BA

A  :  0.1875

BB

B  :  0.8125 BAB

B  :  0.4375

BAA

A  :  0.5625

A  :  0.9375

B  :  0.0625

AAA

B  :  0.8125

A  :  0.1875

A  :  0.250

B  :  0.750

A  :  0.5625

BAAB

B  :  0.4375

A  :  0.750

B  :  0.250

AAAB,
3/16, 13/16

AAA
3/16, 13/16

BB
15/16, 1/16

BAB
1/4, 3/4

BA
9/16, 7/16

BAAB
3/4, 1/4

BAA
9/16, 7/16

e

A

A

B

B

B

AA

A B

AB

A

A B B

AAB

A

A B

Foulkes’s example: 7 state machine, word length ≤ 4
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Periodic re-discoveries of Foulkes’s idea [7, 8, 9, 10]
Check out the VLMC package from CRAN
Some evidence that people (or at least mid-1960s undergrads
in Michigan) do something like this [11]
More exactly, people seem to learn the states, but don’t make the right
predictions in those states
This would be a nice topic to re-visit
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What about sofic processes?
Learning strictly sofic machines is more tricky
One approach is CSSR (“causal state-splitting reconstruction”)
[12]

1 Learn states (tree-like) which predict one step ahead,
much like Janet

Pr (Xt+1|St) = Pr
(
Xt+1|X t

1
)

2 Then sub-divide states until they are resolving, i.e. must
have Rt+1 = T (Rt , Xt), and St = f (Rt) for some T , f

Can learn even strictly sofic processes if they are synchronizing
Must not learn strict tree in (1), and must do (2)
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2 1B  |  1.0
B  |  0.5

A  |  0.5

2 1B  |  1.0
B  |  0.497

A  |  0.503

exact even process vs. CSSR with n = 104
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Error estimates: bootstrap
(paper in preparation on analytical theory but it is very tricky)
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