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The Story So Far

Deterministic dynamics can produce stable distributions of
behavior

Discretizing with partitions gives symbol sequences
These need a statistical description

Inference for Markov chains
Inference for higher-order Markov chains
Inference for stochastic machines
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Likelihood for Markov chains

Likelihood for Markov chains

Basic case: m states/symbols, transition matrix p° unknown
Parameters: matrix entries p;

observe x{' = X1, X2, ... Xp

Th probability of this sequence is

n
Pr (X1n = X1n) = Pr (X1 = X1)HPI‘ (Xt = Xt’Xt_-] = Xt—1)
t=2

(by Markov property)
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Likelihood for Markov chains

Re-write in terms of p;

n
L(P) = Pr(X; = x) prr_m
t=2

Define Nj = number of times i is followed by j in X
m m
Wi
L(P)=Pr(Xs =x) [[] ]}’
i=1 j=1

L(P) =logPr (X; = x1) + > _ njlog p;
hj
Maximize as a function of all the p;
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Likelihood for Markov chains

Solution:
b=
U ..
> Nj

What about x;? Use conditional likelihood to ignore it!
By the ergodic theorem,

Ni 00

?_)pipij

(where did p° come from?) also

3 Ny, o
—~ N !
j
Yo)
o 0
Pij — Pj
as we'd like
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Likelihood for Markov chains

Parametrized Markov Chains

@ May not be able to vary all the transition probabilities
separately

@ May have an actual theory about how the transition
probabilities are functions of underlying parameters

In both cases, P is really P(6), with 6 the r-dimensional vector
of parameters
Again, maximize the likelihood:

Z oL Gp,-,-
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Likelihood for Markov chains

For this to work, we need Guttorp’s “Conditions A”
which he got from [1, p. 23]

@ The allowed transitions are the same for all 6
technical convenience

@ p;(0) has continuous 6-derivatives up to order 3
authorizes Taylor expansions to 2nd order
can sometimes get away with just 2nd partials

© The matrix dp;/06, always has rank r
no redundancy in the parameter space

© The chain is ergodic without transients for all 6
trajectories are representative samples
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Likelihood for Markov chains

Assume all this; also, #° = true parameter value
Then:

@ MLE § exists
@ 9 — ¢° (consistency)
© Asymptotic normality:

Jn (é - 90) s N(0, I71(89))

with expected (Fisher) information

luv(6)

N PUO) OB OP; N oo 02109 Pj(0)

(2nd equality is not obvious)
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Likelihood for Markov chains

Error estimates based on /(6°) are weird: if you knew 6°, why
would you be calculating errors?

Option 1: use /(9)
Option 2: use the observed information

o == 3 BB

n 00,00,
(Guttorp’s Eq. 2.207, but he’s missing the sum over state pairs.)
Notice that ~
1 .92L(6)
Juv - -
n 06,00,

nd is how much the likelihood changes with a small change in
parameters from the maximum; J~' is how much we can
change the parameters before the change in likelihood is
noticeable
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Likelihood for Markov chains

Alternative error estimates

Can get standard errors and confidence intervals from these
Gaussian distributions

but they’re asymptotic

Generally no simple formulas for the finite-sample distributions
This doesn’t matter (much) because we can simulate
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Likelihood for Markov chains

Parametric bootstrapping

@ Have real data x', get parameter estimate 0
@ Simulate from 8, get fake data Y (“bootstrap”)
@ Estimate from faked data, get §

Approximately,

(0 —6% ~ (6 -0)
We want the distribution on the left; we can get arbitrarily close
to the distribution on the right, by repeating steps 2 and 3 as
many times as we want
(Connections between bootstrap and maximum likelihood: [2])
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Likelihood for Markov chains

Higher-order Markov Chains
Markov property: for all ¢,

Pr (xt|x{—1) = Pr (X X;_1)

kth-order Markov: for all t,
Pr (XIXIT) = Pr (XX}

In a Markov chain, the immediate state determines the
distribution of future trajectories

Extended chain device: Define Y; = X!

Y} is a Markov chain

The likelihood theory is thus exactly the same, only we need to
condition on the first k observations
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Likelihood for Markov chains

Hypothesis Testing

Likelihood-ratio testing is simple, for nested hypotheses
fsmanl = MLE under the smaller, more restricted hypothesis,
qsmall degrees of freedom

Opig = MLE under larger hypothesis, d.o.f. g
If the smaller hypothesis is true,

z[ﬁ(ébig) — ﬁ(ésmall)] ~ X%‘big—dsmall

Everything is nested inside the non-parameterized estimate; it
has m(m — 1) degrees of freedom for a first-order chain,
mK(m — 1) for a k-order chain.

fixed transition matrix, or fixed value of #°, has 0 d.o.f.
lower-order chains are nested inside higher-order chains, so
you can test for order restrictions
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Beyond Markov Chains

Partially-observable Markov chain process where we observe
a random function of a Markov chain

Xt = f(St, Nt), St Markov, Nt 1 St

Hidden Markov model observation X; independent of
everything else given state S;

Stochastic finite automaton X; plus St uniquely determine Sy, 1
a.k.a. chain with complete connections

HMMs and SFAs are both special cases of POMCs

HMMs are more common in signal processing

SFAs are more useful for dynamics, and easier to analyze:
stochastic counterparts to the machines from last lecture
Good intros to HMMs: [3, 4]

Good advanced reference on HMMs: [5]
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Beyond Markov Chains

Specification of an SFA:
@ Set of states S, alphabet of symbols A
@ Transition function T (i, j) = state reached starting from i on
symbol j
© Emission probabilities Q; = probability of state i producing
symbol j
© Initial distribution over states

Graph: circles and arrows, as before; add probabilities Q; to
the arrows
Skeleton or structure of SFA: just (1) and (2)
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Beyond Markov Chains

Likelihood theory for SFA Observe x{
Assume skeleton is known, initial state sy is known
Then state sequence is known recursively: s;. 1 = T(St, Xt)

Log-likelihood:
n
L(Q) =) log Qsx, = Y > njlog Q;
t=1 ieS jeA
with N = emission counts
Once again,
A n:
Q= —
! ZjeA njj
and once again A
Qj — Q,?
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Beyond Markov Chains

If the initial state is not known:

Likelihood becomes weighted sum of state-conditional
likelihoods; somewhat ugly but numerically maximizable
Synchronization: Write s;,1 = T(sy, x}) — abuse of notation
Skeleton synchronizes if, after some 7, T(s1,x]) = T(s}, x])
or, x{ is enough to pin down the state, never mind starting point
All finite-type processes synchronize (7 = order of process)
Many strictly sofic processes synchronize after a random time
(e.g. all three examples from Lecture 5)

Can do likelihood conditional on synchronization
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Beyond Markov Chains

What do if the skeleton is not known?
1. Try multiple skeletons, cross-validate
2. Try multiple skeletons, use BIC

BIC = £(f) - g log n

Hand-waving:

Large n = 6 Gaussian around #°, s.d.  n~1/2

Parameters with more impact on likelihood more precisely
estimated

—% log n comes out as expected over-fitting

BIC is consistent for estimating the order of Markov chains

3. Other model-selection tests/heuristics (e.g. bootstrap tests)
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Beyond Markov Chains

Model Discovery/Construction

Systematically build a model to match the data

Basic idea for Markov chains goes back to John Foulkes’s
Janet in the 1950s [6]

Each state contains a word s; a sequence of observations
should land us in that state if they end with that word

For each state, keep track of the conditional distribution

Pr (Xi|s).

Also keep track of Pr (X;|as), for each one-symbol extension as.
If Pr (X;|s) differs significantly from Pr (X;|as), split into multiple
states.

Keep going until no more splits are called for.

Result: variable-length Markov chain
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Beyond Markov Chains

Variable-length Markov chains are equivalent to higher-order
Markov chains — why bother?

Computation and comprehensibility: tree representation
Statistics: fewer degrees of freedom (m — 1 per state), which
means more efficient
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Beyond Markov Chains

08125

BAA
A : 0.1875 9/16,7/16

0250

Foulkes’s example: 7 state machine, word length < 4
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Beyond Markov Chains

Periodic re-discoveries of Foulkes’s idea [7, 8, 9, 10]

Check out the viMC package from CRAN

Some evidence that people (or at least mid-1960s undergrads
in Michigan) do something like this [11]

More exactly, people seem to learn the states, but don’t make the right
predictions in those states

This would be a nice topic to re-visit
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Beyond Markov Chains

What about sofic processes?

Learning strictly sofic machines is more tricky

One approach is CSSR (“causal state-splitting reconstruction”)
[12]

@ Learn states (tree-like) which predict one step ahead,
much like Janet

Pr (X;14]St) = Pr (Xe11|X])

© Then sub-divide states until they are resolving, i.e. must
have R;.1 = T(R:, Xt), and St = f(R;) for some T, f

Can learn even strictly sofic processes if they are synchronizing
Must not learn strict tree in (1), and must do (2)
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Beyond Markov Chains

A105

A 1 0.503

\4

@ B11.0
B | 0.497

exact even process vs. CSSR with n = 10*
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Beyond Markov Chains

Error estimates: bootstrap
(paper in preparation on analytical theory but it is very tricky)
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