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We now write the log likelihood from observing x,, ... ,x, (as above we
argue conditionally upon the initial state)
1(8) = Xn;log p;(8), (2.204)
D

where as before n;=#{0sk<n-lix,=ix, =j}. Differentiating we get the
likelihood equations .

2 oyt O
30 L,,(B)-Dpij(e) 20, 0,k=1,...,r. (2.205)

Let 8y be the true parameter value. The following result is due to Billingsley
(1961). We wiil not prove it here.

Theorem 2.16  Assume Conditions A.

(i) There is a consistent solution @ of the likelihood equations.

(ii) n (6—90) ~>N(0,I7(8;)), where I is the information matrix with typical
element

%;(8g) Op;(8) 9p;;(6)

I, (8g) = (2.206)
w 0) (,‘,_,ép Pij(ﬂo) aeu aev
and m;(8p) is the stationary probability of state i,
(i) Varvi (é—B) can be consistently estimated by
-1
n; a
{- '—:'Vzlogp,-j(ﬁ)] . (2.207)

The quantity inverted in (2.207) is called the observed information.

Application (Russian linguistics, continued) We estimate p by max-
imizing the log fikelihood

I(p) = (ngp+n1)log(1-p) + (g +n19)log p, (2.208)

where 1 denotes a consonant and 0 a vowel. The maximum is obtained at
p=(noy +n10)Vn=(7,532+7,533)/20,000=0,753. The second derivative of the log
likelihood is
noo+n ng +n
_ heo ;I _ ko - 10 (2.209)
(1-p) P

1(p) =

so from Theorem 2.16 the asymptotic estimated standard error is
(=@} *=(p(1-p¥n)*, yielding an asymptotic confidence interval for pof
(0.747,0.759). Notice that neither pg;=0.872 nor p,,=0.663 fall inside this
confidence interval, indicating that the simple one-parameter model is inade-
quate, O
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It is straightforward to develop a likelihood ratio theory of testing hypotheses -

for Markov chains satisfying Conditions A. Here is a general result, again left
without proof (see, e.g., Billingsley, 1961, Theorem 3.1).

Theorem 2.17 Assume Conditions A. Let @ be the mle under the
parametric hypothesis Hg. Also, let IP be the nonparametric mle, and 0, the true
value of 0, assuming that Hy is true. Then

. d
(a) 2(/(8)~1(8g)) = X2(r)

- - o
(b) 2((P)—L(8)) — x*(d (d~1)-T)

(c) The statistics in (a) and (b) are asymptotically independent. 0

Remark  Under conditions simiiar to Conditions A it is possible to derive a
result much like Theorem 2.17 for testing a parametric model against a submo-
del. That is, in fact, the resuit given by Billingsley (1961}. ]

Example (Testing for independence} Suppose we want to study the
hypothesis that (x;) is a sequence of iid random variables, taking values in
{0, ....K} (so d=K+1). In terms of a parametrization this is simply Hy: Pij=6;
for all ie S and each je S. We must compute the maxima of the likelihood under
the two models. We already know that ﬁ,-j-:n,-j/n,-. Under the independence
assumption we have a multinomial distribution, with "-j=z,-"ij observations

from the category with probability 8;. The likelihood is
K-l K-l
@)= Yon;0 +ne(1-3,6), - (2.210)
Jj=0 i=0

which is maximized by §j=n.j/n. Hence the log likelihood ratio statistic for test-
ing Hy is

.
n.i/n

- " /n; :
2Py 1(8)) = ZZn,-jlogM 2.211)
ij o

which asymptotically has a %2 distribution with K (K +1)-K =K? degrees of
freedom. In the Snogualmie Falls rain model we have K =1, in accordance with
our earlier claim. a
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Application (Sedimentology) An important aspect of geology is stratig-
raphy, the description of sedimental layers. An interesting question is whether
or not there is memory in observed sequences of strata, or facies. If memory, or
perhaps better preference, is present the conditional probability that facies B
will be deposited on top of an observed facies A may then be different from the
conditional probability given any other underlying facies.

Hiscott (1981) studied the Ordocovian Tournelle Formation in Québec
and distinguished, based on field criteria, two different facies associations (or
underlying transition probabilities) for six different facies:

Facies  Description

Thick shale

Interbedded graded siltstones and shale
Poorly sorted sandstones with dispersed clasts
Interbedded graded sandstones and shales
Amalgamated graded sandstones

Thick coarse sandstones

L T SR PR N R =]

Of course, there are no i~»i transitions. The transition counts for one of the
facies associations are given in Table 2.4.

Table 2.4 Upward transition counts in the Tournelle Formation

Facies O 1 2 3 4 5

2 0 2 2 0 6
0 23 31 17 8 84
21 0 45 27 8| 101
54 44 0 66 25| 190
6 24 81 0 381 149
5 8 31 32 0 76

88 99 190 144 79 [ 606

th 2 WM —=O
N OO - OO

Our null hypothesis is independence, i.e., no preference in the sedimentation.
The log likelihood statistic works out to 405.9 with 4x6—5=19 degrees of free-
dom, since K =5 but the transition matrix is restricted to have zeros on the diag-
onal. Hence the P-value is 0, and we reject the hypothesis of independence. [

Remark  As in the multinomial calculation in Appendix A, the log likeli-
hood statistic is approximately a Pearson ¥ statistic, in that

(2
n.. n..—n Ya
22:;,-,-103”"0 =z( 4 ‘f,’”) + op(l).

il ;P

(2.212)

The latter form is sometimes more convenient to compute, ([
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Application (Russian linguistics, continued) We are testing the
hypothesis Hy: pjo=po1. The expected counts that we need for the ¥? statistic
are computed by muitiplying the row sums (ng,7,)=(8,638, 11,362) with the
transition matrix estimate under Hg

~ _ [0.247 0.753

= [0.753 0.247 (2.213)
yielding

2131.4 6506.6
[8558.4 2803.6 (2.214)

The x? statistic for testing the one-dimenstonal null hypothesis given above
within the general nonparametric Markov chain model is

A0,
2 = s 197 | (2215)
b

The exact likelihood ratio statistic is also 1217.7, so the approximation is excel-
lent. The statistic has one degree of freedom, since the general nonparametric
model has dimension 2 and the null hypothesis has dimension 1. Hence the null
hypothesis is rejected, as was suggested by the confidence interval we derived
earlier. The test used in this example can also be thought of as a test for station-
ary distribution (%4,%), since this happens if and only if the transition matrix is
doubly stochastic (Exercise 6). O

Application (Stock market pricing) Much effort in finance theory has
gone into studying the predictability of the stock market. The efficient market
hypothesis (see Fama, 1970) implies that the deviations of the overall stock
market (or, more precisely, of a portfolio containing all the stocks of a given
exchange) from the mean should be independent random variables. This in turn
implies that knowledge of the previous behavior of the market does little to help
predict future behavior. The stock prices are said to follow a random walk.
Empirical studies have cast some doubt over this hypothesis. There is some evi-
dence that large deviations from the mean (in essence, highly overpriced or
underpriced stocks) tend to be reverting to the mean, leading to negative corre-
lations over long periods of time, and violating the independence assumption.

Several explanations have been proposed to this market behavior. One,
proposed by Blanchard and Watson (1982), is called the rational speculative
bubbles model. In this model, investors realize that prices exceed fundamental
values, but they believe that there is a high potential for the bubble to continue
to expand and yield a high return. This high return compensates precisely for
the risk of a crash, showing the rationality of staying in the marked despite the
overvaluation.
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McQueen and Thorley (1991) applied a Markov chain model to annual
stock returns. This chain took into account the behavior of the market for two
successive years, each classified as above or below mean (the mean value used
was a running 20-year mean—the results are not sensitive to the choice of mean
yalee). The state space, using 0 to indicate below average prices, is
S={(0,0),(0,1),(1,0),(1,1)}, where (0,0) denotes two successive below average
years. In fact, while it is a regutar Markov chain on this state space, it can also
be considered a second order Markov chain, on the state space (0,1). The term
second order indicates that the dependence goes back two steps. We shall study
higher order chains in more detail in the next section. The transition matrix for

the chain is

I=pooi Pos O 0
0 0 l-pou Pon
I-pio1 P12 O 0
0 0 l-pm Pin

(2.216)

where pop; is the transition probability from (0,0) to (0,1). Since the second ele-
ment of the previous state must be the same as the first element of the current
state we do not need four binary digits in the subscript for p. In terms of this
model, the random walk hypothesis is

Ho:pom =Pon =Pio1 = Pin (2217
while the rational speculative bubbles hypothesis can be written
Hyipoo > P (2.218)

since the probability of state O should be larger following (1,1} than following
(0,0). Thus, rejection of the hypothesis ‘

Ho: pon =P ' (2.219)

in the right direction can be taken as evidence in favor of the rational specula-
tive bubbles hypothesis.

The data used by McQueen and Thorley consist of continually com-
pounded returns for a portfolio of all New York Stock Exchange stocks for the
calendar years 1947 to 1987. We consider only an equally-weighted portfolio
where continually compounded inflation has been subtracted from the nominal
rates. The data are given in Table 2.5. In this case we know the initial state: it is
(0,0). The mle’s are

Poor = 0.750; poyy = 0.818; pio =0.5; pyyy = 0.1 (2.220)

The likelihood ratio test of the random walk hypothesis H, yields a test statistic
value of 14.0 on 3 degrees of freedom. Nominally, this corresponds to a P-value
of 0.003. Since the numbers involved are rather small, McQueen and Thorley
performed a simulation study yielding an actual P-value of 0.01. It is quite clear
that the random walk hypothesis is untenable. The test of H7 is 8.6 on 1 degree
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Higher ¢
Table 2.5 Transition counts for NYSE portfolio 19471887
0 1 ‘
' oo {2 6 which as;
@on |2 9
(10015 5
anlo 1 degrees o
Applicat
of freedom, rejected at all levels using the chi-squared distribution, and receiv- at the Snc
ing a P-value of 0.01 in the simulation study. Since py;; < Poo We may want to
interpret this as evidence in favor of the rational speculative bubbles
hypothesis. (]
2.8. Higher order chains
In the stock market example at the end of the previous section we saw how the
dependence on the past can reach farther than just to the previous time. We
define an rth order Markov chain (X;) on a state space § with d elements by
PXp 1 =Xnst | Xa=X0sXa1 =X 1 - - - X =X0) The 95%
=X, 15X 1 |Xn=xnn oo s Xper s 1 =Xnr a1} (2.221) mode] wa
inside this
= PXnrtls - - - XniXn sihs that if the
replacing subscripts by function notation for readability. There is no real outs'ide th
novelty in an rth order chain. Let namely (¥;) be a process with state space S” the '“;PO“
defined by ¥;=(X_s1, - - - .X,). Then The " sta
. s0 the st
P(Y,=(ay.....a) | Y=y, ... b)) . parameters
o) - . lue is 0.
_ | pby, .. baay) if a=biy, =1, =L : va -
~ | 0 otherwise. (2222) .
In order tc
Some reflection shows that (¥;) is a first-order Markov chain with (d—1)d" statistics i
states. Hence we can use first-order chain statistical theory to test hypotheses This create
such as the chain being fth order, where I<r. We can formulate the hypothesis pose that ;
as true order |
d .
P(al ey 'ar;ar+l) = p(ar—Hl [ 1ar;ar+l)' (2223) ;L:EBL(;:(
The mle under this hypothesis is on the sam
the noncen
- BBy 41s .+ Op0
plag,....0:58,41) = (Gr-1a1 L) (2.224)
n(ar—Hl LR :ar)

whete n(a, 141 - - -,8,) =X, G141, - - -2 1)- The x? statistic is
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(n(alv <8y )"ﬂ(d], .- ,a,)ﬁ(al - aar;ar+l))2

- . (2.225)
P P sl n(a,, e -ar)p(ah e !ar;af'i'l)

which asymptotically has a x? distribution with
(d-Nd"—(d-Nd' = (d-1)d"(d"-1) (2.226)

degrees of freedom.

Application (Snoqualmie Falls precipitation, continued) Looking
at the Snoqualmie Falls data in more detail, we obtain Table 2.6.

Table 2.6 Data for second-order model

Previous days Current day  Proportion
Second First Dry Wet wet
Wet Wet | 100 527 0.841
Dry Wet 25 94 0.790
Wet - Dry 70 52 0426
Dry Dry | 109 67 0.381

The 95% asymptotic joint confidence set for (pyy.por) from the first-order
mode] was (0.775, 0.893)x(0.272, 0.524). All the observed proportions fall
inside this set, indicating that the first-order model is adequate. Note however,
that if the previous two days were (dry,wet), the observed proportion 0.790 is
outside the individual 95% confidence interval (0.808, 0.860) for p,,, showing
the importance of using simultaneous rather than individual confidence bands.
The % statistic for testing second order vs. first order is 2.4. Here r=d =2, I =l
so the statistic -has 1x2'x(22V—1)=2 degrees of freedom. There are four
parameters in the second-order model, and two in the first-order model. The P-
value is 0.29, and we see no reason to reject the first-order model. ]

In order to test for order of a Markov chain we may use the fact that the test
statistics in successively nested hypotheses are asymptotically independent.
This creates a multiple decision problem, which is complicated to analyze. Sup-
pose that a chain is really order 1. Then the probability of falsely rejecting the
true order is the probability of falsely accepting order 0, and of falsely rejecting
order 1 in favor of order 2. These two events are asymptotically independent.
The second has asymptotic probability o, but the probability of the first depends
on the sample size and on how far the p;; are from the independent case (i.e., on
the noncentrality parameter of the 2 statistic).
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A different possibility is to consider the order as a parameter, and estj-
mate it using maximum likelihood. This does not work, because we can make
the likelihood arbitrarily large by having one parameter for each observation.
However, if we penalize the likelihood for the number & of independent param-
eters, by maximizing 2 {(@)—f (k,n) for some suitable choice of f, we may be
able to offset the increase in the likelihood that is due to an increase in the
number of parameters, rather than to an improved fit, Many different choices of
f have been suggested, We will use the Bayes Information Criterion (BIC),
for which f (k,n)=k log r. In other words, we look for the model that maximizes

BIC(k) = 2max 1(8) - k log n (2.227)

where @, is the parameter space corresponding to k parameters (not all values
of k may be possible). An important point is that the sample size used must be
consistent with the largest model considered. For example, if we are consider-
ing a third-order model, and we have n observations of the chain, we can onaly
use the last » -3 observations for the zero order model, the last n—2 for the first
order, etc. This is because the estimates of the third-order model do not start
until the fourth observation, the first three being needed to see what state the
chain is leaving. It turns out that for finite state Markov chains, BIC is a con-
sistent estimate of the order of the chain (Katz, 1981). The rules of thumb of
Jeffreys (1961, Appendix B) suggest that a difference in BIC of at least 2 log
100 = 9.2 is needed to deem the model with the smaller BIC substantially better.

Application (Snoqualmie Falls precipitation, continued) In order
to apply the BIC to the Snoqualmie Falls data we need the maximum likelihood
for the chains of order 0, 1, and 2. These are given in Table 2.7, with the value
for the model chosen by each criterion shown in boldface.

Table 2.7  BIC for Snoqualmie Falls precipitation

Order k  2i(By) BIC
0 1 -12595 -12665
1 2 10753 -1089.2
2 4 —10730 -11008

Both the likelihood ratio test and the BIC favor the first-order model. It is usu-
ally the case that BIC only has one maximum as a function of k. Generally BIC
tends to choose smaller models than the likelihood ratio test. ]

High-order Markov chains have rather a lot of parameters: (d—1)¢ for the full
ith order chain. This makes the model unsuitable even for relatively small d, as
shown in Table 2.8. One would sometimes like a model that allows for high-
order dependence, although not using as many parameters as the full /th order
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Table 2.8  Number of parameters for different order chains

Order
1 2 3 4
2 4 8 16
6 18 54 162
12 43 192 768
20 100 500 2500

th B W R

model. Raftery (1985a) proposes a linear model for Markov chain transition
probabilities. Let O=(g;) be a transition matrix, A an l-vector of parameters
summing to 1. Assume that

i
PXG=j | X1 =i, - - - Xe=i) = Thidje (2.228)
i=1
Tt is clear that this defines a Ith order Markov chain. If @ is ergodic then X is
ergodic and has an equilibrium distribution %, which also is the stationary pro-
bability vector for Q. This model is called the mixture transition distribution
(MTD) model.

It is straightforward to write down the likelihood for an MTD model,
IS !
LAQ)= Y nln....inDlog(X Mg (2.229)
iy, ... =0 j=1
There is no simple closed form for the maximum likelihood estimators. The
fikelihood must be optimized numerically (Schimert, 1992).

Application (Wind power in Ireland) In order to design turbines for
wind power generation in Ireland, data were collected on hourly wind speeds at
Belmullet for the first four weeks of July, 1962. The 672 wind speed measure-
ments were grouped into four states:

State 0:  No power produced (-8 knots
State 1:  Less than full potential 8-16 knots
State 2:  Full capacity 1625 knots

State 3:  Closed down due to high winds > 25 knots

Since no transitions to other than neighboring classes were seen, transitions

farther away were assumed to have probability zero in order to cut down on the
number of parameters in the general Markov chain model (see Table 2.9). The
likelihood ratio statistic for testing order 2 vs. 1 is 32.3 on 10 degrees of free-
dom (P = 0.0003), and that for testing order 3 vs. order 2 is 18.9 on 26 degrees
of freedom (P = 0.84). The likelihood ratio test therefore chooses order 2. The
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Table 2.9  Order selection for Irish wind power models

Order Markov chain MTD chain
k L BIC k L BIC
0 3 -869.5 17586
1 6 -417.5 —874.1
-2 16 3852 -874.5 7 -3956 -836.7
3 42 -3663 -1006.1 8 3880 -828.1
4 110 -3472 14105 9 -388.0 -834.6

penaity for additional parameters in going to order 3 is simply too large. Note
that the maximum likelihood for the MTD chain of order 3 is comparable to that
of the general chain of order 2, so not much is lost in reducing from 16 to §
parameters. The estimated parameter values are

A = (0.629, 0.206, 0.165) @230

and

08370163 0 0O

=~ lo0s8 0854 0.088 0

2=1"0 0.133 0.847 0.040| (2.231)
0 0 0116 0.884

The estimated stationary probabilities are .

= = (0.148, 0.416, 0.324, 0.111). (2.232)

We see that the turbines are expected to be producing power about 3/4 of the
time in July, although optimal production only occurs about 1/3 of the time. We
interpret A as the relative strength of influence of past values. O

2.9. Chain-dependent models

In order to test the goodness of fit of our model of Snoqualmie Falls precipita-
tion, we may, for example, derive the theoretical distribution of some functional
of the data, and compare it (using our estimated parameters) to the empirical
distribution from our data. Some examples of interesting such functionals are
the number of rainy days in a week, the total amount of rainfall in a month, and
the maximum rainfall in a month (a number of particular hydrologic impor-
tance).

Let Z,,...,Z, be a sequence of random variables such that the distribu-
tion of Z, given that X, =/ and X,=/, has distribution function F - We can
think of Z;,; as a score associated with the Ath transition. Note that this gen-
eralizes the ergodic theory in section 2.5, since we are introducing external ran-
domness (not just looking at a non-random function of the current state).
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Conditional on a given sequence of transitions we assume that the Z; are

independent. Let S, =Z’I'Z,‘. S, is called an additive functional of the Markov
chain. Our goal is to compute the distribution of S, or equivalently its Laplace

transform

s (1) = E*(exp(-£5,)), (2.233)
assuming  that the Markov  chain is in equilibrium.  Write
¢§;)(z)=E(exp(—tS,) | Xg=j,X,=k). Given that Xy=j, X,,_1 =, and X, =k, the ran-
dom variables S, and Z, are conditionally independent, with Laplace
transforms ¢ () and 0§ (r), respectively. Thus

E(exp(—1S,) | X1=/,Xp1=hXa=k) = 6§ D@00 @). (2.234)
Averaging over the value of X;,_; we get

0% 1) = E(exp(—£S,) | X1=/,X,=k)

= Y P(X,.1=1 | Xa=k.Xo=]) (2.235)
i

XE(exp(—tS,) | X1 =j,Xy1=LX,=k)

or, since P(X,_1=! | X, =k, X, 0=/ y=p P pupfp,
PO = oG VG D Oputdi’ (). (2.236)
I

Writing Q™ (1) = (PP 6% (1)), we see that
Q") = Q" QM (" (2.237)

so, with Q('=Q, we must have Q™) (¢)=(Q(#))". It now remains to average over
Xoand X,

8,(1)=E™(exp(—S,)) = SAGPPOP@ = mQEO 7. (2238)
5k

Example (Semi-Markov chains} One drawback with Markov chains is
the inflexibility in describing the time spent in a given state. We have seen
(Exercise 2) that this time must be geometrically distributed with parameter p;.
A generalization is the semi-Markov chain, in which the process moves out of a
given state according to a Markov chain with transition matrix P, having p;;=0
for all j, while the time spent in state j is a random variable with distribution
iunction Fi(1), or, more generally, Fy(l) where i is the state the process came
Tom. g
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Application (Snoqualmie Falls precipitation, continued) Suppose
that we are interested in studying the distribution of the number of days in a
week with measurable precipitation. Then Z=1(X;=1)=X;. Thus ¢gp=d19=1
and o =) =¢~". In Exercise 11 we show how to compute Q" using diagonali-
zation. However, for small values of »n there is a simple recursive formula for
computing the exact distribution of §,. Let uf=P%(S, =k) and v{"=P' (S, =k).
Then

uf = P(S,=k,X,=0] Xo=0) + P(S,=k, X, =1| X=0)
= P(S,_; =k | Xo=O)pgo + P(Sp_1=k—1 | Xo=Dpoy.  (2239)
Performing a similar computation for v{*’, we have

W) = Dpoo + v pay
_ Ty . 2.240
v = Dpig + v Py @240

Finally, for a two-state chain in equilibrium, we have

PY(S,=k) = mouf® + mvi. (2.241)
For the Snogualmie Falls data the exact distribution was computed for n=7,
using the estimated transition matrix

= _ [0.602 0398
P (056 0324) (2.242)

and compared to data from 144 midwinter weeks (Table 2.10).

Table 2.10  Snoquaimie Falis weekly rainfall

# wet days  Observed Expected
frequency  frequency

3 1.9

5 4.5

9 9.0

10 15.0

21 21.9

25 276

30 30.0

41 342

0
1
2
3
4
5
6
7

The %2 statistic for goodness of fit is 4.03 with 4 degrees of freedom, for a P-
value of 0.40. Strictly speaking the %2 distribution is not applicable, since the
observations are from successive quadruples of weeks. However, as we have




Discrete time Markov chains

recipitation, continued) Suppose
fistribution of the number of days in a
hen Z=1(Xp=1)=X;. Thus dgo=¢1p=1
yw how to compute 0" using diagonali-
there is a simple recursive formula for
Let u{"=P%(S,=k) and viP=P(S, =k).

) + P(S,=k. X 1=1| Xo=0)
4+ P(S,_ =k—1|Xo=1)pm.  (2.239)

) we have

(2.240)

um, we have
(2.241)

ct distribution was computed for n=7,

(2.242)

er weeks (Table 2.10).

nie Falis weekly rainfall

ved Expected
ncy frequency

19

4.5

9.0

15.0

21.9

27.6

30,0

342

.03 with 4 degrees of freedom, for a P-
distribution is not applicable, since the
ruples of weeks. However, as we have

Chain-dependent madels 77

seen, the dependence between events seven days or more apart is fairly small.
More precisely, the correlation between ¥.'Z; and Y17, is estimated to be
0.074 (Exercise 12). The adequacy of the y2-distribution is the subject of Exer-
cise C5. O

In modeling_the Snoqualmie Falls precipitation we have so far concentrated on
Jooking at the presence or absence of rainfall. By augmenting the parameter
space, as in the Irish wind example in the previous section, we can take into
account the amount of precipitation, at least in a rough way. From a forecasting
int of view it is important to do better than that. To that end, we will follow
Katz (1977) and look at a bivariate process (X,,Z,), where X, =1(precipitation
on day n). As before, we assume that X, is a first-order Markov chain with sta-
tionary transition probabilities p;; and stationary distribution £. The amount of
precipitation on the nth day is Z,, positive precisely when X, =1. We make the
following assumptions: :

(i) The distribution of Z, depends on (X, X;,).
(ii) The Z; are conditionally independent, given the process (X,,).
It follows from these assumptions that
P(Z,<x | X0.Z1.X1,Z2. X2, - - - g1, Xn 1 =0)
= P(Z,<x | X,-=i). (2.243)

Let Fyx)=P(Z,<x | X,_;=i,X,=1). Suppose that the chain is in equilibrium.
Write

Wi = B(Z, | Xy =0, X,=1) (2.244)
and

o? = Var(Z, | X, =i, X,=1). (2.245)
By unconditioning

i =EZ, = 3 mp; {2.246)
and

pp = VarZ, = EVar(Z, | X,,,X,) + VarE(Z, | X,_1.X,)
=Ko}  + Varpy = Y6l + Yrmntpi — (2.247)
= Typ o (03 +15) + By py (T +uf) ~ P2

. n
We will now look at the total amount of rainfall in » days. Let S, = 3Z,. Then
1
(O’Brien 1974)

S,—nu 4
—— = N(@,1 2.248
on’ (0.1) { )




where 62=py+23.°p;, and p;=Cov(Z,,Z, ;). provided that 0<g?<eo. To com-
pute o we do another conditional computation: o

Eznzu+j =EE(Z,Z, +j | Xn-1:Xn X 4j1 Xn +j) . (2249)
=Epy Mx,, ., = Y ruhp.
ik

This is again an additive functional. Adapting equation (2.238}, let

_ |0 paiko
a= |y Pul-ll] (2.250)

and 1=(1, 1). Then we can write

EZ,Z,,; = tQIP/Q1". (2.251)
Note that p=rQ17. Thus

p=nQ(P'-17m)Q1" (2.252)
and

o’ =py + ZinQ(IPf—ITu)QlT. (2.253)

j=t

The following fact helps in the computation:

Lemma 27 W-1"n=P-1"ny.

Proof  We prove this by induction. The case j=1 is trivial. Assume that the
statement is true for k. Then, since tlP=x

P _1Tg = (P-1Tm)P = (P-1"x)}P
= (P-1Tay*! + (P-1m)17x (2.254)
= (P-1"m)**" + (P*-1"m)1"

using the induction hypothesis twice. Now, since 17 is a right eigenvector for IP
we have P17 = 17 and by iterating P 17x=1"n, so (IP"—IT‘II:)IT =0, com-
pleting the induction. B

It follows that the infinite sum is 22Q(IP-17n)" @17, and some algebra shows
that

RRo(P 11 1 —Po1Ho)- (2.255)

2
Gl=pg+ ———
Po 1-(P11—P10)
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1+;), provided that 0<o? <. To com-
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Xa !Xn +j-1 ’er +j)
)
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o(p 11 —Pot Mo)- (2.255)

S

Chain-dependent models 79

Application (Snoqualmie Falls precipitation, continued) In order
1o illustrate the theory developed above we will apply it to the Snoqualmie Falls
gata. In order to fit the precipitation amounts, a gamma distribution was
assumed. Figure 2.5 shows the observed and estimated distributions.

0 o
=1 o
[=] (=]
o Al
[= [
>z © z o
N7} @
8 8
= )
(=3 L]
o =
Q L] T ¥ id o ¥ Ll L Lg
0 100 200 300 0 100 200 300
Amount follo{uing dry day Amount following wet day
Figure 2.5,  Observed and filted densities of precipitation amounts following

wet days (a) and dry days (b).

The parameters were estimated by maximum likelihood, The estimated scale
parameters are different for wet days following wet days than for wet days fol-
lowing dry days, while the shape parameters are quite similar. Thus there is a
tendency for lower amounts following a dry day. The means are [ip=22.9 and
11, =43.5, so 1=28.3 (recall that W is the overall mean, taking into account the
zero rainfall on dry days). The variances are 64=691.7 and 6§=2351.7, whence
62=2339.0. In order to check assumption (ii), the amounts of precipitation on
consecutive wet days were plotted on a log—log scale (Figure 2.6). There is no
evidence of dependence. In order to study the distribution of the total amounts,
the exact distribution, using the fitted gamma distribution, was compared to the
limiting normal distribution derived above. Figure 2.7 shows the result for
n =20, together with a histogram of observed sums for January 6-25. The fit of
the exact distribution to the observed sums is rather bad, the latter showing evi-
dence of bimodality, perhaps corresponding to dry and wet years. In addition,
the normal approximation is bad, which is not too surprising since we are only
summing up 20 random variables, many of which are zero. O




80 Discrete time Markov chains

=]
1ot
w 1 I;
]
R D L
k=] )
o= L
S M 1. LI
= :':
S o A
O : .
- 4° .
- L
=3 K -

L

o
-

Previous day

Figure 2.6.  Amounis of precipitation on consecutive wet days.

500 1000 1500

Pracipitation

Figure 2.7. Exact theoretical (solid) and asymptotic (dotted) densities of
precipitation January 6-20. The solid step function is a histogram of the 36

observed years.

One can easily derive another interesting parameter of the precipitation
process, nmely the distribution of maximum rainfail. Let M,=max;g,Z;, and
G, (;D)=P'(M,<x). Also define G, (x)=mpG,(x;)+m G,(x;1). Splitting the set
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{M,<x,Xo=0} over the possible values of X; we get that
P(Mn SanO =0)

G,(x;0) = P(X,=0)
P(M,<x,Xy=0,X;=0) P(M,<x,Xo=0,X,=1)
= +
P(Xy=0) P(Xy=0)
= P(M4,<x 1 X; =0)P(X; =0 | X(=0) (2.256)

+ P(Mz‘qu.Z]Sx ‘ X0=0,X| =1)P(X1=1 I X0=0)

= pooGn (x;0)+p01 Fo(x)G, 1 (x;1)

where M5 ,=MaXj«;<, Z;. Similarly we obtain
G,(x;1) = p1oGr1 (5;0)4p 11 F 1 (X)G,y (x:1). (2.257)

Using the initial conditions G{x;0)=G4(x;1)=1 these equations can be solved
recursively. Assuming that the F; are ¢df’s of a gamma distribution, and writing

F(x) =1y + Mopor Folx)} + Tp 1 F1(x) (2.258)
the following extreme value result is valid (Denzel and O’ Brien 1975):

x
nF ()

U, + ] = exp(—exp(—x)), (2.259)

lim G,
n—yon

where 1-F(u,)=1/n. Rewriting (2.259) we see that
G (y)=exp(—exp(—nF (un )(y~uy,))- (2.260)

The assumption of gamma precipitation distribution is not crucial: Denzel and
O’Brien (ibid.) show that the limiting behavior of M, is the same as for iid
observations from F (see Resnick, 1987, for details). Also, the assumption of
starting in the stationary distribution is unnecessary: the limiting behavior is the
same for all initial distributions.

Application ({Snoqualmie Falls precipitation, continued) The fit of
the limiting extreme value distribution is substantially better than the fit of the
limiting total amounts distribution. Using the mle’s determined earlier, and not-
ing that u,=114 for these values, we compute the exact and asymptotic distribu-
tions. Figure 2.8 shows them for 7 =20. The asymptotic approximation is excel-
lent. In addition, the observed maximal precipitation (or, more precisely, the
empirical distribution function of the 36 years of maxima) for January 6-25 is
shown. There is perhaps a slight skewness, with too many small and too few
large maximal precipitation values, but the sample size is only 36. O
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{dotted line) distribution functions of maximum precipitation January 6-25.

2.10. Random walks and harmonic analysis

We have encountered the random watk earlier in different contexts. In this sec-
tion we look at what amounts to an application to mathematics. The harmonic
analysis that we shall encounter is very elementary, although it will allow us to
deal with first passage problems for finite state space Markov chains in some
generality. We begin, however, in the fair coin fossing setup.

Consider a fair, simple random walk on {0,....K}. so that
Piisi=Pisni=rni=0,1,. .. .K —1, and all other transition probabilities are 0. An

interesting problem is to find

f (x) = P*(reach K before 0). (2.261)
By conditioning on the first step we see that

£ (x) = Bf(x=1) + Afx+1) x=1,2,. .K-L (2.262)

The initial conditions are f(0)=0 and f(K)=1.

We call D={1, ...,K—1} the interior points and B={0,K} the boundary
points. A function f (x) on S =D +B is harmonic if for all points in D it satisfies
the averaging property

f () = A =D+fx +1)). (2.263)

The problem of finding a harmonic function given its boundary values is called
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she Dirichlet problem, and the uniqueness principle for Dirichlet problems
asserts that there can be no two harmonic functions having the same boundary
values. To prove the uniqueness principle, we must first prove the maximum

principle:

Theorem 2.18 (Maximum principle} A harmonic function f (x)
defined on S takes on its maximum M and its minimum = on the boundary.

Proof Let M=maxgf(x). If f(x)=M for some xeD, then
f(x_1)=f(x+1)=M. Continuing left, eventually f(0)=M. The same argument

works for the minimum. 0
Theorem 2.1  (Uniqueness principle} If fand g are harmonic func-
tions on S with f (x)=g (x) for x& B, then f (x)=g (x) for all x.

Proof  Let h(x)=f (x}-g (x). Then forxeD
Blx-1+hA{x+1) - fx=D+flx+1) glx—D+gx+1)

2 2 2
= f(x)-g &) = A{x), (2.264)
so h is harmonic. But A is 0 on B, so by Theorem 2.18 it is 0 everywhere. 0

We have now reduced the problem to finding a harmonic function with the
given initial conditions. Using the theory in Appendix B we see that the solu-
tion is £ (x)=x/K. Harmonic function theory also gives simple answers to other
questions about our random watk. For example, are we certain to reach the
boundary eventually ? Let

h (x) = P*(never reach B). (2.265)

Then h(x)=Y%h(x—1)+%h(x+1), so k is harmonic, with boundary values
k(0)=h (K)=0. So A (x) must be identically zero.

How long does it take to hit the boundary? The answer to this question is
not a harmonic function, but conditioning on the first step yields for an interior
x

e(x) = B*Ty = | + VB Ty + YUE**' T (2.266)
The corresponding difference equation then is
(E-1)%e(x) = -2x1* (2.267)

with initial conditions e (0)=¢ (K)=0. Using Appendix B again, the solution is
e (x)=(K-x)x.
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Let us now try a more complicated two-dimensional array.

1 1

1 0 0

Figure 2.9. A subset of the two-dimensional lattice. Adapted from Random
Walks and Electric Networks by P. G. Doyle and J. L. Snell, pubiished by the
American Mathematical Society. .

A lattice point is a point with integer coordinates. In Figure 2.9 we see a subset
of the two-dimensional lattice, with boundary points divided into two types,
marked 0 or 1. Consider a process performing a random walk on the lattice sub-
set. Starting in an interior point, the process moves to each neighboring point
with probability %. We have two classes of boundary states, By and B, and we
are interested in the probability of hitting B, before By.

We describe the general situation as follows. Let § =D +B be a finite set
of lattice points, such that each point in D has four neighbors in S, and each
point in B has at least one neighbor in D. D consists of the interior points, and B
is the set of boundary points. Also assume that S is connected, i.e., that there is
a route from every point to every other point. Call a function fon § harmonic if

F (@,b) = W(fla+1,b)+f (a—-1,b)+f (a,b +1)+f (a,b~1)). (2.268)

As before, our functions of interest, namely the hitting probability f (x) is a har-
monic function with boundary values: f(x)=1(x€B;), i= 0 or 1. where
B=By+B,;. For a finite lattice the maximum principle and the uniqueness prin-
ciple are proved just as before. The problem, then, is reduced to solving the
difference equation (2.268). Using the ergodic theorem we may run many parti-
cles in a random walk on the lattice and note what proportion end up at what
boundary point. This must be repeated for each initial interior point. While this
approach yields an answer, it is slow and imprecise. The theory of partial
difference equations is not very well developed. Let V2 be the symmetric
second difference operator, so that V2g(x)=g(x +1)-2g (x)+g(x-1). Then
(2.268) can be written (using a subscript to denote which argument the operator
is applied to)

Viftxy) + Vif (ny) =0 (2.269)
with boundary conditions f (b)=1(be B)). It is natural to look for guidance to
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the continuous case. The corresponding partial differential equation is
Laplace’s equation

Pray)  Sfy)

ox? ay? (2.270)
with boundary condition
lim f(x,y) = 0(t), tedD .
ol f () = 9(0) @271

where 9D is the boundary of D. In the continuous case any function satisfying
Laplace’s equation is called harmonic. The method of relaxation was
developed to solve the continuous Dirichlet problem. It is based on a result
which says that a function is harmonic if its value at (x,y) is equal to its average
over any circle inside D centered on (x,y). This suggests a method of successive
averaging of function values. Translated to the lattice case, the method of relax-
ation works as follows. Start with an arbitrary function with the right boundary
values, such as

1
1 0
1 0 0
1 0

1
0 1
0 0
0

Pick an interior point, such as (2,2) (with (0,0) being at the lower left-hand
comer of the minimum rectangle containing all the states). If the function is not
equal to its values over the neighbors, adjust it. Run through all the interior
points in some order. The new function becomes

I I

1 05 0625 1

1 0832 0328 015 0O
1 0 0

The new function is still not harmonic, in general, but we can repeat the pro-
cedure until it converges. After nine iterations we have

1 1

1 0823 0.787 1

1 0876 0506 0323 0
1 0 0

Note that this can be done automatically in a spread sheet program.

There is a third way of solving Dirichlet problems. This method involves
th.e theory of Markov chains directly. Suppose that the chain has state space S,
with the boundary states B absorbing, and transition matrix . Call a function f
barmonic for P if

fy =X Pyf(j) forallieD. 2.272)
J
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Writing f as a vector, with the absorbing states first, we have that fT=Pf7, 5o
P fT=f7 for all n. Note that o

po): _ {0 0 N
P = [R Q] =lc, 0" (2273)
Here C, .1 =RE+QC,. Letting n—eo We see that C=R+QC. Hence
10
P (&) (2.274)
where C=(I-Q) ' R. Then ‘
T T
r_ |13 =[IIO] fa 2975y
F=1ml= oo |4 (2.275)
We see that
f5=Cfh=(0-0)'Rf} (2.276)

so that fp, is determined by the values of fat the boundary. Numbering the states
in Figure 2.9

“0000000%
0%%000000
R=1000000%%% (2.277)
00000%000
000%%0000
0% 0%O0
%000 %
0=1000%0}| (2.278)
“Louou
0% 0%O0
Sincef3=(1,1,1,0,0,0,1,1,1) we get that
0.823
0.787
(E-Q)'Rf; = [0.876(; 2279
0.506 ,
0.323

the same result as that obtained by the method of relaxation, without the need
for iterations, but requiring a matrix inversion which may be difficult if the state

space is large.
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Random walks and harmonic analysis .

Application (Airplane fire escape probabilities) To assure

rofitability, airlines must configure their airplanes to carry the maximum
pnumber of seats. However, the maximization is constrained by passenger safety
and comfort, as well as by the maximum useful load carrying capacity of the
airplane. The Federal Aviation Authority (FAA) of the US requires that ail com-
mercial airplanes have a maximum evacuation time of 90 seconds for all seating
configurations. _

One serious situation requiring evacuation is a fire in an engine with
smoke obscuring the exit pathways. For example, in 1985 a Boeing 737 taking
off from Manchester developed a fire in the left engine. The pilot first thought
that the problem was a blown landing gear, thereby delaying the eventual eva-
cuation of the aircraft. After about a dozen passengers had left the airplane, the
interior was filled by thick black smoke. The cabin attendants were unable to
see from the left to the right forward door. The 131 passengers were tourists,
with many relatively inexperienced flyers. Many crawled over seats looking for
exits. 76 passengers survived the fire.

Figure 2.10 shows the seating configuration.

Figure 2.10.  Seating arrangement for a Boeing 737.

There are 20 rows of six seats, three on either side of the aisle, and two more
rows with three seats to the right and only two on the left. Two seats were unoc-
cupied, but including infants there were 131 passengers. Only two forward
exits and the right overwing escape hatch were usable. Except for the front
row, escape routes were not generally to the nearest exit, indicating that the
behavior was somewhat random.

Assuming the fair random walk model for passengers (this includes the
possibility of trying to walk through a wall, corresponding to a zero escape pro-
bability, and assumes that individuals reaching an aisle can find an exit) we
solved the corresponding harmonic function problem. Escape probabilities for
an individual in a window seat on the left varied from 0.101 in row 1 to 0.25 in
rows 10-14, while a right window seat occupant had probabilities ranging from
0.101 (row 1) to 0.596 (in the overwing exit row 10). Aisle seats generally had
higher escape probabilities, varying from 0.467 (row 1 on left) to 0.808 (row 10
onright). The total expected number escaping the fire from this extremely sim-
ple model is 55, corresponding well to the 60-65 passengers who experienced
the smoky environment and escaped. We can compute estimates of the change
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in escape probability if we add exits. Adding an exit amounts to increasing the
number of preferred exit states. The same type of computation indicates thy;
each additional exit (up to four additional exits) increases the expected number
of survivors by about one. |

Note that a function f which is harmonic for IP satisfies IPfT=f7, so it is, in a
sense, a dual concept to the stationary distribution, More precisely, where the
stationary distribution is a left eigenvector of P, any harmonic function is a
right eigenvector, both corresponding to the eigenvector 1. Recall that the func-
tion f(x)=1 is always a right eigenvector, and, consequently, so is any constant
function. It turns out that this is the unique right eigenvector whenever P
corresponds to an irreducible persistent chain, provided that f is either non-
negative or bounded (see Asmussen, 1987, section 1.5 for some discussion on
how this is useful in the classification of chains). Our application of the concept
of harmonic functions to hitting probabilities deals with transient chains, where
the behavior is more interesting.

Example (Electric network) Consider a network with five resistors and
a unit voltage applied across it (Figure 2.11).

N — I«

Figure 2.11. A simple Wheatstone bridge with unit voltage to be applied
between a and b,

=™ |

The conductance between two points x and y is the inverse of the resistance
between the points, In this case C,.=C,y=Cpy=Cp.=1 while Cy;=C,=2. We
are interested in determining voltages v(x) at various points in this network.
Two laws describe the behavior of the system:

|

(1]

e T

Kirchhofi’s law; The current flowing into x is the same as the current flowing
out from x.
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Obm's law: If x and y are connected by a resistance R, then the current
fowing from x 10y is

- Y@ () 2.280)

Iy =
Xy R
~ xy

The voltage at a is 1 and that at b is 0, so if x#a,b Eyi,),:O, and since iy=—iyy

we have
y(©)XCoq = TCov () (2.281)
Y Y
or, writing CﬁZyC .
C,
v(x) = Z;’Lv(y)- (2.282)

y
Now notice that IP=(C,,/C,) is a transition matrix. Making a and b absorbing
states (i.e., changing the corresponding rows to have 1 on the diagonal and 0
elsewhere) yields a modified transition matrix IP*, and v is harmonic for IP*, We
need the modification since (2.282) only holds for x#a or b. In this case,

1000
lo 1 0 0
P*= 414 0 12 (2:283)
/525 25 0
30
_ 5/4 58 (14 1/4) [1] _ {116
@-0)" Rvp = [1/2 5/4] [1/5 2/5] {0] = (3/8 ’ (2.284)
i.e., v(c)=0.4375 and v (d)=0.375.
Note that IP is reversible, since C,,=C,,, so
C, Cx C c
= B o L 2.285
Po="c "¢, "¢, P, (2285)

This reversibility is required by physical theory. In particular, therefore, we
must have a stationary distribution  satisfying n,/i,=C,/C,, whence n,=C,/C
where C=ZyCy. A lot more material on the relation between random walks and

electric networks can be found in Doyle and Snell (1984). O

Application (Airplane fire escape probabilities, continued)

Another Boeing 737 fire with substantial cabin smoke occurred in 1984 in Cal-
gary (this and the Manchester fire are the only instances of this type for the
Boeing 737). Again, an engine fire was first interpreted by the pilot as a tire
failure on the landing gear. In this case the 114 passengers were frequent fiyers,
and had all flown with this type of aircraft before. All on board the airplane
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survived. Here the simple random walk predicts 59 survivors, but the
passengers did not act randomly. For example, the passengers in rows 1-7 all
exited through the forward doors, those in rows 8—16 through the right overw-
ing exit, and those in rows 17-22 through the right rear exit.

A weighted approach assumes that a passenger in an exit row moves to
the exit with probability 5/8, and to the other three adjacent locations with pro-
bability 1/8. Passengers in a row adjacent to an exit row have equal probabili-
ties of moving toward the aisle or climbing over seats. All other passengers
have probability 5/8 of moving toward the aisle, and 1/8 of moving in any other
direction. This simple model of informed bebavior yields 101 expected sur-
vivors. a

2.11. Bienaymé-Galton-Watson branching processes

The simple branching process was first studied by Bienaymé' in 1845 in order
to find a mathematical (rather than social or genetic) explanation for the fact
that a large proportion of the family names, both among nobility and bour-
geoisie, seemed to be dying out when viewed over a long period of time. It has
been applied to problems of genetics, epidemiology, nuclear fission, queueing
theory, and demography, among other areas, and is one of the simplest non-

ergodic stochastic models. It is commonly called the
Bienaymé—Galton—Watson (BGW) process.
Let
Zy
Zi= Y X (2.286)

i=l
where for each k the X;; are iid random variables with the same distribution
pi=P(X; ;=I) called the offspring distribution. We interpret }:? as 0. Suppose
that the offspring distribution has pgf P(s), with mean m and variance i
Assuming that Zy=1, we see that

Ps) = Es® = Py (P(s)). (2.287)
By induction we see that
EZ, =EE(Z.|Z;_)=mEZ,_; = - -~ =m*. (2.288)

Notice that EZ;—< where m >1, while it stays constant when m =1 and goes to
zero when m<1. For this reason processes with m>1 are called supercritical,
those with m =1 are critical, and those with m <1 are subcritical. Furthermore

'Bienaymé, Irénée-Jules (1796-1878). Inspector General of the Administration of Finances of
France 1834—1848, subsequently independent mathematician. Much of his work had long been
overlooked; see Heyde and Seneta (1977).
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VarZ, =EVar(Z, | Z, ;) + VarE(Z, | Z,_,)

= 0°EZ, ; + m*VarZ,_; = o*m*! + m?Varz, (2.289)
so that, using the methods in Appendix B,
k—l i —
Varz, = o2m*- Somf = gmi-1 22 11 (2.290)
“ -

From (2.286) it is easy to see that the process (Z,) is a Markov chain, with tran-
sition probabilities p; = p;, where p* is the i-fold convolution of (p;). Another
way of writing the process is

Z,=mZ,_; +e,, {2.291)

where e, =Z,—mZ,_; can be thought of as a prediction error, having conditional
mean 0, given the past, and conditional variance 62Z,_,, given the past.

From the construction in (2.286) it is also clear that once a generation is
empty, all following generations will be empty as well. Therefore we will com-
pute the probability of eventual extinction. Since this Markov chain has infinite
state space, the method used in the previous section to compute hitting proba-
bilities does not apply.

Theorem 2.20  Suppose that po>0, po+p; <1, and let g=P(Z,—0). Then g
is the smallest nonnegative root of the equation P(s)=s. Furthermore, g=1 iff
msl.

Proof  Extinction will occur in or before the kth generation in one of the fol-
lowing ways: the ancestor has

0 children

1 child whose family becomes extinct in or before the (k~1)th generation
2 children, both of whose families become extinct in or before the
(k~1)th generation, etc,

Let P(s) = Es*. Since the probability of the jth of these cases is p;, the proba-
bility g,=P(0) of extinction after & generations is, by conditioning on the first
family size,

P(Z;=0) = Pi(0) = 3, p;Ps-1 (0Y = P(P_1(0)). (2.292)
j=0
Since py#l1, we note that P(s) is a strictly increasing function. Thus the
numbers g; = P(g,-,) form a strictly increasing sequence of positive numbers,
all bounded by 1, This sequence therefore has a limit which we denote g, with
Posg<l. This is the probability of ultimate extinction. By going to the limit in
(2.292), we see that g=P (g), whence

P{(q)—Plqy) _ A%

<L {2.293)

q—dqx q=qy
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Letting k—oo we see (Figure 2.12) that P{¢)s1.

o ,
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o~ #
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& © Pt
e
s
Ve
<
= . . r '
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Figure 2.12. The sequence g, (large dots) for a superciitical branching
process. The doited fine is the pgf P (s), and the dashed line is the line y =s.

Since P (s) is a power series with positive coefficients it is an increasing func-
tion, i.e., P(s) is convex. If P’(1)>1 we must have g <1. In this case g and 1 are
the only positive roots to the equation P(5)=s. On the other hand, if P7(1)<],
we have for 0<s<1 that P’(s)-1<0, so that the smallest zero of the function
P (5)—s must be 1, whence g =1.

Finally, if pg=0, Z;2Z;_;, and extinction is impossible. If p=1, Z;=Z,,
and extinction is again impossible. Upon noting that P°(1) = m, the proof is
complete. O

Example (Epidemics) The problem of determining the fraction of a
community that must be vaccinated in order to prevent major epidemics of a
communicable disease is a crucial public health problem. In order to describe
an epidemic, the population is divided into three possible health states. An indi-
vidual can be susceptible to infection by a given disease agent, (s)he may have
been infected by the agent and is infectious (possibly after a latent period), or
{s)he is removed from the epidemic by death, by isolation, or by immunity or
other natural loss of infectiousness. Initially all members of the population are
susceptible to infection. The epidemic starts when one or many infectious indi-
viduals enter the population and come into contact with its members. A suscep-
tible person is infected if (s)he has adequate contact with -an infectious indivi-
dual. General theory of epidemic models can be found in Bailey (1975), and
their statistical inference is discussed, e.g., in Becker (1976) and Rida (1991).
A BGW process can be used to approximate the infectious population during
the early stages of an epidemic (Becker 1977). Clearly, since the number of sus-
ceptible individuals decreases as the epidemic progresses, it is unreasonable to
assume that the offspring distribution is the same from generation to generation.
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However, for early stages of epidemics in large populations the assumptions
underlying the BGW process are not unrealistic.

In order for an epidemic to become serious, a large buildup of cases is
needed in the early stage. Consequently we can call an epidemic major if the
offspring mean is >1, and minor if it is <1 (so that the extinction probability is
1. In order to prevent major epidemics it is necessary to ensure adequate vacci-
nation in the community so as to make the offspring mean less than one. Sup-
pose that we select a proportion  of the population at random for vaccination.
If the vaccination is effective, the offspring distribution changes to
P*(s)=0+(1-8)P(s) with mean m" = (1-8)m, so that m’<1 only if 8>1-L/m.
For a numerical illustration, assume that the offspring distribution is Poisson.
Then the probability 1~g of a major epidemic is a function of m.

Table 2.11  Probability of a major epidemic

m 1 105 11 14 1.8
l-g 0 .09 .18 .51 73
i-~1/m 0 .05 .09 .29 44

The third line of Table 2.11 contains the proportion of vaccination needed to
bring the new mean below one. If one accepts this model it becomes of consid-
erable importance to be able to estimate m as accurately as possible. O

In order to estimate m, first suppose that we know all the Xj;. Then the likeli-
hood would be ¥ Nilog py, where Ny=#{X;=k}, and the mle of p, would be
Ni/N, where

n~1

N = ENk = sz = Yn-l‘
k=0 [\]

(2.294)

The mle of m is then
¥,-1
Yn—l .

. - KNy # children
n = k - = =
TP =2, N # parents

(2.295)

Notice that thif does not depend on the (), only on the generation sizes. This
suggests that m may also be the mle based on only observing generation sizes.
This happens to be the case (Keiding and Lauritzen, 1978).

It is clear that {0} is an absorbing state, and it can be shown that all other
'.states are transient. In fact, either the chain dies out, or it explodes (diverges to
mﬁ{li.ty). Unless py=0, extinction has positive probability, and therefore m, has
Posva probability of converging to 1-1/Y,. The statistical theory developed
In section 2.7 fails to apply, since the process is not ergodic. However, condi-
tional on nonextinction we show below that m,—m with probability one. It is
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difficult to determine exact finite-sample properties of .

5 10 15 20
Generation

Figure 2.13.  Five paths of a BGW process with Poisson offspring distribution,
Adapted from P. Guttorp, Statistical Inference for Branching Processes, hy
permission of John Wiley & Sons, Inc. (1991).

The growth of a BGW process, given that it does not become extinct, is
geometric. In Figure 2.13 we see the logarithms of five paths from a process
with Poisson offspring distribution with m=2. After some initial wigglyness,
they look quite linear. The figure suggests that if we rescale the generation
sizes by their means, which are growing geometrically, we may end up with a
limiting constant. This is not quite right: the limit turns out to be a random vari-
able.

Theorem 2.21  Let m>1, and define W,=m™Z,. Then W,—W with proba-
bility one, where EW=1, VarW=c%/m (m~1), and P(W=0)=q.

A proof of this result can be found in Guttorp (1991, Theorem 1.1). Notice that
the set { W=0} is precisely the set where the process Z, becomes extinct.

Corollary  m,—m on the set of nonextinction.

Proof  Write

mY, = mSZ, = S WP (ﬂ)- (2.296)
H 1

Hence, whenever W>0 we see that
i = (Y, —m (DY, ) > m 2.297)
m

with probability one. 0
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Remark Nonparametric inference for BGW processes is quite different
from that for ergodic Markov chains. It can be shown (Guttorp, 1991, section
1.4) that, in essence, only the mean and the variance are consistently estimable
from observing a long, non-extinct path. For example, one cannot estimate g or
P(s) in general. O

Application (Smallpox epidemics) We now proceed to study in more
detail an example of the application of branching processes to smallpox epi-
demics. This disease, although now completely eradicated (only two laboratory
specimens remained by 1993), had a well defined incubation time of about 12
days (rarely outside 9-15 days). Therefore the cases in the early stages of an
epidemic tend to be well separated, and it is easy to determine generation sizes.
We use data (Table 2.12) from Vila Guarani, a residential district in Sdo Paulo,
on variola minor, the less lethal form of smallpox. The epidemic was introduced
by two travelers, who are not included. They were only responsible for the
ancestor.

Table 2.12  Vila Guarani epidemic

Generation { 0 1 2 3 4
Size 1 5 3 12 24

After the fourth generation school vacations started, and mass vaccination was
introduced. Hence later data does not have similar conditions. The maximum
likelihood estimate of the offspring mean is 2.10, indicating that a major epi-
demic was developing. One may argue, however, that although conditions were
relatively constant within generations, they may not be constant between gen-
erations. In particular, the weather may be quite different almost two months
from the first cutbreak. The weather is important, since the disease was spread
through close proximity, partly through airborne transmission, and weather
affects the social behavior. To investigate this possibility, we need to introduce
the idea of random environment. A branching process in random environment
is obtained by picking an offspring distribution for each generation at random
from a set of possible distributions. If there is substantial variability in the suc-
cessive parent/offspring ratios m,=Z/Z,_;, compared to what would be
expected from a fixed offSpring distribution (constant environment) we would
conclude that the environment may be random. These ratios are shown in Table
2.13. Given Z,_,, the conditional variance of m, is 0°/Z,_,. There are several
different ways of estimating 6%. We use a maximum likelihood estimator, based
on computing the variance for the maximum likelihood estimator of the
offspring distribution (see the Remark below). This yields &”=4.18. Thus we
obtain the results in Table 2.14. These ratios are consistent with the hypothesis
of constant environment, in that only ratios larger than 2 in absolute value
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Table 2.13  Vila Guarani estimates

r |1 2 3 4
m |5 06 4 2

Table 2.14  Vila Guarani model evaluation

r 1 2 3 4
se(m,) 204 091 118 059
(m,—m)se(m,) | 142 -164 161 —0.16

would be suspicious. If we want to vaccinate enough of the population to make
the epidemic minor, we need to reach (1—1/n) or 52% of the population. How-
ever, since the main path of infection is through the class room, the closing of
- schools for vacation would already affect the offspring mean considerably. O

Remark  The mie of the offspring variance (Guttorp, 1991, section 3.4) does
not have a closed form, and is somewhat complicated to compute. A simpler
estimate is 62=(n -1 i (Z—mZ;_; Y*/Z;_, . This is generally a more variable
estimate. In this case & =10.20, consid_egably larger than the mle. The
corresponding analysis using & instead of 6~ would show even less indication
of a random environment. O

Another application of branching process theory is to a very different type of
problem. Given the frequency of a particular genetic variant occurring in a
population, can we figure out how long ago the mutation first arose? Here the

parameter of interest is the age N of a branching process, and our observation is -

simply Zy. In order to answer the question, we must specify the offspring distri-
bution, It is not unreasonable to assume that the spread of the variant is quite
similar to the population growth in general. A useful and flexible distribution,
which has been found to describe human population growth adequately in
different situations, is the modified geometric distribution:
P = b, k=1 (2.298)
b
=] ==
Po 1—c

with mean m =b/(1-c)* and variance o?=b(1-b—c2)/(1~c)*. We shall think of
m as the mean rate of increase of the mutant type, representing a selective
advantage if it is higher than the overall population mean, and a disadvantage
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if it is lower. It is convenient to reparametrize the distribution in terms of m and
p=(i-cVe, so pp=mhi(1+hy®*D for k21, and po=1-mh/A1+h). Then
q=1_.(m-1)h if m >1. One advantage with the modified geometric distribution
is that it is self-reproducing: the distribution of Z, is of the same form, with

fag2eq_ i—1 by
p=h = " (2.299)

where M=(1—so)(m'=sp) and sp=1—(m—1)r (Exercise 13). Furthermore,
p(z,:k]Z,>O)=M(1—M)""I, a regular positive geometric distribution, with
mean 1/M and variance (1-MYM?. If we observe Zy=k>0 (necessarily), the
conditional log likelihood can be written

LN, m,h) = log M (N,m,h)+(k—1)log(1 —M (N,m,h)). (2.300)

We have three parameters, but only one¢ observation. We can reduce the param-
eter space by assuming that k is a known constant, corresponding to a known
value of c=p/Pi-1, assumed to be obtained from population data. This implies
that the selective advantage enters only through the parameter b. The likel:-
hood equation becomes M =1/, so the maximum likelihood estimate of Nis

A log(1+(k=1Xm=1h)
N=
log(m)

provided that m#1. If m =1, a similar computation yields N =(k-1)h.

(2.30D)

Application (Yanomama genetics) We apply this theory to the study of
rare protein variants in South American Indian populations. A variant is con-
sidered rare if it occurs in only one tribe. Such mutations have presumably
arisen after tribal differentiation, are probably descended from a single mutant,
and because of the low intertribal migration have not spread to the general
South American Indian population. We will look at the Yanomama tribe, living
in the Andes on the border between Brazil and Columbia. The Yanomama albu-
min variant Yan-2 is wnique to this tribe, although it is fairly frequent, and
therefore must be quite old. Extensive sampling of 47 widespread Yanomama
villages found 875 replicates of the variant gene in the current adult population.
From demographic data for this tribe, a selectively neutral gene would have
offspring well described by a modified geometric distribution with ~=1.5. The
offspring mean m is slightly above 1 (although in recent years the mean popula-
tion increase has been higher, perhaps as high as 1.2). Figure 2.14 shows the
likelihood (as a function of m and N) arising from this datum. The middle line
is the ridge of maximum likelihood, and the outer contour lines correspond to
the maximum likelihood minus 2 and 4, respectively. For m =1.0 the maximum
likelihood estimate of the age is 1311 generations, or about 30,000 years. This
is far longer than the time these tribes have been in the Americas, so it would
appear unlikely that the vartant would have survived only in this tribe. In fact,
this value of m corresponds to a slight selective disadvantage, making the
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Figure 2.14.  Likelihood surface for the Yanomama gene. The solid line is the
tidge of maximum likelihood, while the dotted contours are 2 and 4 units of log
likelihood below the maximum. Adapted from P. Guttorp, Statistical Inference for
Branching Processes, by permission of John Wiley & Sons, Inc. (1991).

estimate even less plausible.

An increase rate of 1,02 may have been sustained by the Yanomama over
long periods of time. The maximum of the likelihood then occurs at 168 genera-
tions, which is a more reasonable value, comresponding to a variant which is
perhaps 3,800 years old. This supports the hypothesis that the allele is rela-
tively old, but has arisen after tribal separation. We do not need to assume that
the gene has had a selective advantage.

In order to obtain confidence intervals for these values we have to deter-
mine the asymptotic properties of the estimator. If m >1, given that Zy>0, we
have

log m(N—N) = log (m™™(1 + (Zy=1)(m ~1)h)) > log ((1-¢)W2.302)

with probability 1 as N—seo, since (m—1)k=1-¢. Here W, as before, is the limit
of m™Z,. For the positive geometric distribution one can determine the distri-
bution of W: it is exponential with parameter 1—g. Notice that the estimate is
not consistent, even in the peculiar sense of this limiting result. We can use the
result to compute confidence bands. Note first that (1-g)W~exp(1), and the 97.5
and 2.5 percentiles of the standard exponential distributions are log 1.0256 and
log 40, respectively. Thus if {~exp(1) we have
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0.95 = P(log 1.0256 < { < log 40)
= P(log 1.0256 < (1-¢)W < log 40)
log log 1.0256 < log((1-g)W) < log log 40

=P < < 2.
( log m logm logm ) (2309
~pioglog LU0 5 loglog 4l
~P(lo log 1.0256 <N_N< loglo 40)
logm logm
o~ = »'
= PV - log log 40 <N<R- log log 1.0256 )
logm log m
which in this case yields the band (102, 353) at m=1.02. O

While the BGW branching process is a non-ergodic Markov chain, a slight
modification yields an ergodic chain. Assume that at each time » there is a ran-
dom number [, of immigrants, each of which behaves like the rest of the popu-
lation. This is called a branching process with immigration. We can write the
total population size Z, as

Z

Zy=3Xint 1 (2.304)

i=1
We assume that 7, is independent of the previous [ and Z,, and that the I, are
identically distributed with pgf Q(s) and mean A<eo. If m=EX;,<1 we have
seen that the corresponding branching process becomes extinct with probability
one; however, the immigration process ensures that 0 is no longer an absorbing
state. It would therefore seem reasonable that the resulting process may be
ergodic. The pgf for Z, satisfies

Po(s) = Es® = E(P(9)*)Q(s) = P, s (P(sDQ(s). (2:305)
If a stationary distribution exists, it must have pgf I1(s) satisfying
II(s) = G ()IP(s)). (2.3006)

Taking derivatives, we see that the stationary mean L is
p=I17(1) = Q"(DINP (1) + (TP (1)P (1}
=A+pm (2.307)
or L=A/1-m), provided that m<1,

Remark The equation (2.306) has a solution under the assumption that
Elﬂ_g(max(ﬂ,l 1)<, When m =1 the resulting Markov chain can be either null
persistent or transient. Asmussen and Hering (1984) give detailed proofs.



100 Discrete time Markov chains

Application (Traffic theory) Fiirth (1918) counted the number of pedes-
trians at five-second intervals passing a certain building. Thinking of each
pedestrian as arriving as an immigrant, and having offspring 0 or 1 depending
on whether or not the pedestrian leaves the observation area between two con-
secutive observations, we have P(s)=l-m+ms and, assuming Poisson distri-
buted input (some motivation for this wiil be given in the next chapter),
0(s)=exp{A(s—~1)). The stationary distribution satisfies (2.306), i.e.,

TI(s) = exp(A{s~1))I{(1—m+ms).

It is easy to check that [(s)=exp(u(s—1)) satisfies (2.308), i.e., that the station-
ary distribution is Poisson with parameter {.

In order to find the mle for the parameters m and A, note that

(2.308)

minj) 3k . .
pi =PZ=j| Za=i) =€ 3 T [;c]m"(l-m)“". (2.309)
k=0 .

1t helps to reparametrize in terms of pL and #. Then

log L(L,m) = Y n;log py; (2.310)
where
minGij} ik f; -
py=ehi-m 3 — {L]m"(hm)'“"”‘. (2.311)
k=0 U_k)!

To compute the mle we may of course maximize the likelihood function numer-
ically, but it is instructive to manipulate the likelihood equations a little further.

Note that

apy ; 7
P o _(—mypy + Lpy - (2.312)

au p

min(i,f) |4k P . '
> —(%_—;)T i_lllmk(l—-m)”'f‘z". (2.313)
k=1 '
Furthermore,
api; i+ 1 2
—ai-wp[.j_—l—:n%p,.j;, Tl (2.314)

Hence the likelihood equations are

Aog Lm) _ o v f_mypto—iy =0
oy Znyt m)+}l IlPij}

_1_+L]_”£L} _o

(2.315)

(2.316)

dlog L{,m) _ <. i+l
om =Xl o *

m 1-m
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Let R=Xn1ii/Pij» Ny =Yin;, and N,=Y jn;. Notice that R is a function of |
and m, while Ny and N are not. Then the equations can be written

(L) N~R 0
~(1—m)n + =
B

Nl +N2-'2R R 0 2317
-— g — =), .
Hr 1-m m
Solving the first equation for y we have p=(N—r)n (1-m), and uéing this in the
second we get m=R/N,. Substituting this back into the expression for L we see
that
~  (Ny=R)N,
= = = N,/ 2.318
u #(N,-R) 2/n ( )
or the mean of the observed path, provided that we ignore edge effects, so
N,=Nj. The equation m=R(ji,mYN, must be solved numerically, and numeri-
cal optimization of log L{ji,m) (the profile likelihood for m) is just as easy.

The transition counts from Fiirth’s data are given in Table 2.15.

Table 2.15 Pedestrian counts

0 i 2 3 4 5 6 7
01]67 24 6 1
123 8 46 11 2
2 7 41 58 25 5
3 1 16 18 23 7 5
4 1 7 g8 7 2 1
5 1 1 5 1
6 1
7 1

For these data N,=N,=804, while =505 so [i=2804/505 = 1.59. Numerical
optimization yields m=0.69.

The number P=1-m is called the probability aftereffect. It measures the
probability that an individual in the system will leave it during the time
between observations, but can also be thought of as a measure of dependence.
If v is the average speed of a pedestrian, 7 the time between observations, and b
the width of the building, we see that P=yt/b. We can estimate P from the data.
50 the average speed of a pedestrian, using =5 seconds and b=20 meters (this
value is just a guess, as Fiirth does not say how wide the building is), can be
estimated as v=(1-m)b/t=1.25 m/s. We can assess the variability of this esti-
mate by producing a likelihood interval for m. Figure 2.15 depicts the likeli-
hood surface. We see that (0.63, 0.74) is a confidence interval for m, so the
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1.4 1.6 1.8

1.2

1.0

Figure 2.15.  Likelihood surtace for the pedestrian data. Contours are at 2.3
(approximately 90% coverage) and 3.0 {95% coverage) units of log likelihood
below the maximum.

average pedestrian speed confidence interval (using the assumed value of b) is
(1.0, 1.5).

In order to assess the fit of this model, Venkataraman (1982) suggests a
time series approach, which has been extended and applied to these data by
Mills and Seneta (1989). Since we have that

E(Z, | ZF1 Yy = + mZ, ' (2.319)
we look at the fitted residuals -
& = Z—h—mZ . (2320
Consider the jth-order autocorrelation function of the ék' k=1,...,n, namely
R
Z, EpEpy
7 = -’ELTJTE‘;;}A';}O. . (2.321)
pR=
k=1

Then Venkataraman shows that

j |
NGyt 207 42 (2322)
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where
A2 (/N
V= .. mnln A A "
ra+m r1—2my g€y €2/ Wo

(2.323)

Mills and Seneta work this out to be 18.83 for the Fiirth data, and the model
thus is a poor fit. O

2.12. Hidden Markov models

A criticism frequently raised regarding the Markov chain model of precipitation
has been its inability to produce realistic weather data. In particular, the lengths
of wet and dry periods do not correspond to observed data. We show an exam-
ple in Figure 2.16.

] ¥ [=]
0.75 0.80 : g 4
lata. Contours are at 2.3 -
e) units of log likelihood s 2.4
s O
= -
2
g
e assumed value of b) is é g J
o
-aman {1982} suggests a
applied to these data by s
g L -7 T T T
(2.319) 0 5 10. ‘ 15
Interarrival times {days)
(2.320) Figure 2.16.  Estimated survival function {solid line} for the Snoqualmie Fails

dry periods, January—March, together with the Markov chain survival function
(short-dash line). The dotted line is an asymptotic 95% pointwise confidence
band.

e, k=1,...n, namely

(2.321)

Here the estimated survival function (one minus the distribution function) for
dry periods is plotted, together with the survival function for the estimated
geometric distribution that obtains in the Markov chain situation (see Exercise
2). We see that the Markov chain survival function lies below the observed one,
(2.322) indicating a tendency towards shorter dry spells than what are observed. The
dotted fines are asymptotic 95% pointwise confidence bands. The estimation of
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the survival function has to be done with care, since dry periods at the begin-
ning and the end of the month are incompletely observed. Here we have used
methods from survival analysis (Cox and Oakes 1984, ch. 4). Another possibil-
ity is to look back and forward in time to get the complete length of dry periods
straddling January 1 or 31, assuming that the probability model is stationary
over periods longer than exactly one month.

Another criticism of the Markov chain model is that it contains virtually
no scientific knowledge (it is a statistical model, in the sense of section 1.2).
The dependence observed in actual precipitation data is presumed to be a func-
tion of weather systems that pass through an area. It appears reasonable that
dependence between rainfall from different weather systems is much smaller
than that between rainfall on successive days of the same weather system.

A third problem is that the Markov chain approach has not been very suc-
cessful when applied to more than one station in a region. While it is straight-
forward to develop a chain with an N-dimensional state space, represeniing all
possible outcomes of rainfall, the large number (2¥) of parameters does not
seem warranted for such a model.

In order to alleviate the problems discussed above, we shall build a model
for precipitation at k stations by introducing unobserved states (thought of as
somehow summarizing °‘climate’”) which account for different distributions of
rainfall over the stations. The weather states are assumed to follow a Markov
chain, while the pattern of occurrence/non-occurrence of precipitation over the
network at any given time, given the weather states, is conditionally indepen-
dent of the pattern at any other time. This type of model is often called a hid-
den Markov model and is a special case of the general state space model
approach.

Let C(¢) denote the weather state at day ¢ (throughout this section ¢ will
denote the discrete time variable, while 7 will denote the station number). We
assume that C(¢) is a Markov chain with stationary transition probabilities

¥y = P(C()=j | CGt~1)=i), ij=1,...,M (2.324)
and equilibrium probabilities

8=(8y,....0u) (2.325)
so that, writing T'=(Yj;) for the transition matrix of the weather process we have

5T = 5. (2.326)

Let X,,(#)=1(rain at site n on day ¢), n=1, ... N, t=0,1,... Write
X)) = (X (D), . ... Xn(0)) (2.327)
and

Y(6) =@V 982 29X (2.328)
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so that Y(#), which can take on values [=0,1,. ., L=2Y—1, is the decimal
representation of the binary number X(¢), ordered from all stations dry (¥=0,
X=(0, . . .,0)) to all stations wet (¥=N, X=(1,...,1)). We assume that, given
the weather state, the conditional probability of rain is given by

P(Y()=! | C(t)=m) =T, (2.329)

The matrix of conditional distributions Il=(m,,) has all columns summing to
one. For a square matrix A we write A;, for the {th row vector, and A, for the
vector of elements of the /th column vector.

We assume now that C(¢) is in equilibrium, as is therefore X(t). In the
following example we see that in general X(t} is not a Markov chain.

Example (A hidden Markov model which is not a Markov chain)
Let N =2, M =2, and assume that weather state 1 means that the two sites each
have probability p of rain, independently of each other, while weather state 2
means that the two sites independently have probability g of rain. Then

(1-p)* (1-g)°

_ |p(-p) g(1-q)
1= 1p0-p) qC-n)} (2:330)
P g
Suppose now that
I'= % [5 % (2.331)

so that §='1 where 1 is a vector of ones. Then one can compute the conditional
probabilities

PX(1)=(1,1) | X(t-1)=(1,1),X(r-2)=(1,1))

Loy |1 e 2000 @332)
3 pidp’qtigt )
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and
P(X(1)=(1,1) | X(t-1)=(1,1),X(t-2)=(0,0))

= % [p"'+c.r2 (2.333)
. 3p2g%(1=p)*+(1=q)") ]
pA(l-p) +2p2(1-g)* +21-p)Y g +g (1-a)*

Setting, for example, p =0.9 and g =0.1, we see that

PX()=(1,1) | X(¢-1)=(1, 1), X(t-2)=(1,1)) = 0.286 (2.339)
while

P(X()=(3, 1) | X(¢-1)=(1,1),X(+-2)=(0,0)} = 0.278. {2.335)
0

Hence X is not a Markov chain.

The likelihood of observations yy, . - ., can be written using Ak) = diag(I,),
a diagonal matrix of length M with diagonal elements consisting of the kth row

of I1, as
LALD) = P(Y()=y1, - LY (t)=y)

= SMy )TAMY 2 TMy3) - - M1 (2.336)

Application (Snoqualmie Falls precipitation, continued) We fit the
Snoquaimie Falls precipitation data using a two-state version of the general
model described above. Since we have only one site, ¥=X. In order to have
sufficient amounts of data, we use J anuary—March. The model is given by

Tty T2 1-my 1-m;
= = 2.337
n Ptn ﬂlz] l T M2 ] (2.337)
and
R | TR
= = ] 338
r Lle “!22] [ Y2 1'“72] 2338)

The model is determined by the four parameters (7;,72,% ¥2)- The steady-state
probabilities are

8 = (81.8;) = [__,h_ —Y']__]

. (2.339)
Tt Nttt

I
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) |
(2.333)
%)
Yql+q*(1-g) |
1)) = 0.286 (2334)
0)) = 0.278. (2.335)
0
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(2.339)
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The following parameter estimates were obtained by numerical maximi-
sation of the likelihood for the Smoqualmie Falls data for January through
March: ¥;=0.326, 4 =0.142, f;=0.059 and #,=0.941. From (2.339) we see that
§=(0.303, 0.697). Since 7; is nearly zero, this corresponds to a mostly dry
state, which occurs about 1/3 of the time, while i corresponds to a mostly wet
state, occutring 2/3 of the time. If a Markov chain were an appropriate descrip-
tion, we would have m;=0 and 7m,=1. The hidden Markov model is a
significant improvement. The likelihood under the hidden Markov model is
~1790.2, while that under the Markov chain maodel (the constrained hidden
Markov model having ;=0 and n;=1) is —1796.64. The likelihood ratio test
therefore rejects the Markov chain model in favor of the hidden Markov model
with a P-value of 0.002. Using BIC, however, the two models are comparable,
with the hidden Markov model coming out slightly worse.

In order to compare the survival function for dry periods to that observed,
and that obtained for the Markov chain, we need to calculate the theoretical
expression for it. Notice that a dry period starts whenever there is a transition
from I to 0 in the X-process. Denoting the survival function by G (k), we have

G (k) = P(X(1)=0,X(2)=0, . .., X(k)=0 | X(0)=1.X(1)=0) (2.340)

which can easily be expressed in terms of the likelihood function (2.336). Fig-
ure 2.17 shows the survival functions of Figure 2.16, and in addition that of the
hidden Markov model. We see that the hidden Markov model is an improve-
ment over the Markov chain model, although still falling short of the observed
confidence band for k=5. Remember, though, that the confidence bands are
pointwise bands, and that one would therefore not be surprised to see one inter-
val out of ten fail to cover. On the other hand, the bands are appropriate for
independent survival times. This assumption is not strictly met for the hidden
Markov model {although it does hold for the Markov chain model). A

The advantage of the hidden Markov model over the Markov chain model is
more clearly illustrated for a network of sites.

Application (A Great Plains network) A simple two-state version of
the general model was fitted to the sequence of wet and dry days at three sites,
namely Omaha, Nebraska (site A), Des Moines, Iowa (site B) and Grand Island,
Nebraska (site C) using records for the period 1949--1984. Our model is based
on the assumption of two weather states which are temporally commeon to all
three sites. Given a particular weather state, the event of rain at any given site is
conditionally independent of rain at any other site. The probability of rain at
each site varies with the weather state, and can be different from site to site.
The matrix IT has entries

3 '
Tm = [JO1(1-8;,)' ™, 0SIST, m=1,2 (2.341)
i=t
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Figure 2.17.  Estimated survival function (solid line) for Snoqualmie Falls dry
periods in January, together with the survivat function for the fitted Markov chain
(short-dash line) and for the hidden Markov model (long-dash line). The dotted
lines form an asymptotic 95% pointwise confidence band.

where (x},x4,x ) is the binary representation of 1. For example, [=5 corrsponds
to the pattern (1, 0, 1} of rain at sites ! and 3, and no rain at site 2. This model
has eight parameters, namely 8=(8,;,8,;,83,,0:2,62,05,) and ¥=(11.%2).

To allow for seasonal changes the year was divided into six seasons, as
defined in Table 2.16. Any rain occurring on February 29 was added to that of
March 1. The parameter estimates, computed by numerical maximization of the
likelihood are also given in the table.

The two weather states which result can again be described as “‘mostly wet”
and “‘mostly dry’’, i.e., 8, are fairly close to one and 9y close to zero. The esti-
mates vary quite smoothly with respect to changes in season, as does the
estimated unconditional probability of being in a given state,

Table 2.17 gives the observed frequencies for season 1 of various events
of interest together with the frequencies derived from the fitted model. For com-
parison we also give the fitted pattern from the Markov chain model, obtained
by fitting an 8-state chain and computing the expected pattern under the station-
ary distribution. Thus, for example, there were 866 days on which it rained at
both sites A and B in season 1, while the hidden Markov model predicted 862
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1 0.9:

2 0.9¢

3 0.9¢
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Table 2.16 Parameter estimates for Great Plains network

Season Days o Y

1 001-060 0352 0.335

2 061-120 0358 0.350

3 181-180 0.333 0381

.4 181240 0389 0354

5 241-300 0389 0243

6 301-365 0359 0269
Season 911 921 631 éu ézz '923
1 0927 0.874 0762 0039 0211 0.139
2 0944 0.875 0785 0041 0196 0.163
3 0908 0806 0.782 0.042 0.185 0.208
4 0.851 0745 0.720 0.010 0.141 0.187
3 0880 0.804 0775 0030 0126 0.062
6 0891 0865 0707 0015 0175 0.066

Table 2,17  Observed and fitted frequencies of rainfall patterns

Dry A B C AB AC BC ABC

Obs | 718 1020 1154 957 866 752 728 657
HMM | 725 1019 1153 036 862 49 728 657
MC 722 942 1076 1031 789 750 727 655

and the Markov chain predicted 789. The hidden Markov model has preserved
the spatial dependence structure of the records very well, while the Markov
chain model fails badly at that task. a

An important feature of the hidden Markov model is that it is possible to esti-
mate the underlying Markov chain. In the precipitation model above this
implies that it is possible to relate the hidden weather states to atmospheric
observations (this has been carried out, with promising resulis, by Hughes,
1993). We shall see how it is done in a different setting below.

Application (Neurophysiology) Cell membranes contain several types
of ion channels which allow selected jons to pass between the outside and the
inside of the cell. These channels, corresponding to the action of a single pro-
tein molecule in the cell membrane, can be open (allowing passage of the
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selected ion) or closed at any one time. Some channels respond to changes iy
electric potential, while others are chemically activated. Among the latter are

acetylcholine activated channels at so-called post-synaptic membranes of ney..

rons, the basic cells of the nervous system. A more detailed description of ney-
rons is in section 3.8, where we discuss the modeling of neural activity.

Paich clamp recordings provide the principal source of information
about channel activity, A glass micro-pipette is positioned at the cell membrane
and sealed to it by suction. Currents through the channels in the tip of the
pipette are measured directly. The technique was developed by Sakmann and
Neher, who were awarded the 1991 Nobel prize in medicine for it.

o .

=

o

5

d
0 100 200 300 400 500
Index

Figure 2.18. Current measured in a single channe! of an acetylcholine

receptor in a rat.

Figure 2.18 depicts a single channel recording from an acetylcholine receptor.
Disregarding the noise, the cumrent appears to move between two levels,
corresponding to the open and closed states. The sampling interval is of the
order of 10™* seconds, while openings typically last some microseconds.

A very simple model for these observations are independent random vari-
ables, X, ... .X,, distributed N(6;,0%) where 8; is O or 1, in appropriate units.
‘The likelihood for each n-digit binary sequence 0¥, i=1,...,2", is (ignoring
irrelevant constants)

. _ 1 2 .

L) =¢ "exp(= X (x—6)7). (2.342)
_ i=t

Clearly, the mle of 8 must be ] ;=1(x;>%}. This method of estimating the chan-

nel status is called the threshold method.

In order to analyze data such as those in Figure 2.18 we must restore the
underlying guantized signal, i.e., the sequence of zeros and ones. If we, as is
commonly done, use the threshold method, we tend fo get a very ragged recon-
struction, since this method does not take into account the fact that nearby sig-
nals are more likely to be similar than different.
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To avoid the raggedness we need somehow to force the estimate to be
smoother. Similarly to the approach in section 2.7, where we estimated the
order of a Markov chain, we ensure smoothness by penalizing the likelihood for
ragged reconstructions. Technically we shall use what is called Bayesian
statistics. The way it works is that we assume that © is a realization of a sto-
chastic process ©,0,. . .; in this case a Markov chain. Recall Bayes’ theorem

P(X=x | 6=0)P(©=0)
YP(X=x | 0=0)P(6=6)
[}

P(0=0 | X=x) = (2.343)

where the sum on the right-hand side is taken over all the 2" possible binary n-
digit numbers 0. We call P(©=0) the prior distribution of @ (it is obtained
prior to observing X), and P{©=0 | X=x) the pesterior distribution. One way of
writing (2.343), with n(@ | x)=log(P(X=x | ©=0)) and n(8)=log P(O=0), is

(8 | %) = c(x) + (0} + (D) (2.344)

where 1, is the log likelihood function. Thus, maximizing (@ | x) is equivalent
to maximizing the penalized log likelihood 1,(9)+n(0). The effect is to discount
outcomes that are unlikely under the prior distribution. One way to think about
this is that the threshold method maximizes 7(6; |x,-) for each i, while the Baye-
sian approach maximizes (0 | x), simultaneously for all /. The two methods are
the same whenever the B; are conditionally independent given the data, but if
there is dependence (smoothness) the results, as we shall see shortly, can be
quite different.

If we assume that the x; are independent, conditionally upon the 9;, and
that the 8; are a realization of a Markov chain, we must maximize

- 1
-nlogo® + Ylogpe, .6, - ;;’Z(x,-—ﬁ,-)z. (2.345)
i=1

In the case where pg; =p ;g=p <%, this is equivalent to minimizirig

Jlog——‘ll; +nlogc? + 5—:;2-)_‘,(;:,-—9,-)2 +nlogp (2.346)

where J =Z']' 1(8;%6;_1) is the number of jumps in the sequence 0. Equivalently
we can write (2.346)

125 g\ Ao a2 2347
log » Z(el 8;1) +"10362+ 262 E(‘xl i) ( )

We see explicitly how the penalty term (the first term in (2.347)) penalizes adja-
cent dissimilar 8-values.

A naive minimization of (2.344) entails evaluating #(0 |x) for all the 27
possible values of 0, once the transition matrix IP is known, There are two prob-
lems with this: 2" is a gigantic number for a typical data set, and the transition
matrix is unkoown. In order to avoid the first problem we employ a dynamic




