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To accompany lecture 6

This note elaborates on some of the points made in the slides.
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1 Derivation of the MLE for Markov chains

To recap, the basic case we’re considering is that of a Markov chain X∞1 with
m states. The transition matrix, p, is unknown, and we impose no restrictions
on it, but rather want to estimate it from data. The parameters we wish to infer
are thus the m2 matrix entries pij , which are defined as

pij = Pr (Xt+1 = j|Xt = i) (1)

What we observe is a sample from the chain, xn
1 ≡ x1, x2, . . . xn. This is a

realization of the random variable Xn
1 .
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The probability of this realization is

Pr (Xn
1 = xn

1 ) = Pr (X1 = x1)
n∏

t=2

Pr
(
Xt = xt|Xt−1

1 = xt−1
1

)
(2)

= Pr (X1 = x1)
n∏

t=2

Pr (Xt = xt|Xt−1 = xt−1) (3)

The first line just uses the definition of conditional probability, but the second
line actually uses the Markov property — that the future is independent of the
past, given the present.

Re-write in terms of the transition probabilities pij , to get the likelihood of
a given transition matrix:

L(p) = Pr (X1 = x1)
n∏

t=2

pxt−1xt (4)

Define the transition counts Nij ≡ number of times i is followed by j in Xn
1 ,

and re-write the likelihood in terms of them.

L(p) = Pr (X1 = x1)
k∏

i=1

k∏
j=1

p
nij

ij (5)

We want to maximize this as a function of the pij . This happens much as it
would in a problem with IID data.

First, take the log so we’re dealing with a sum, not product, and derivatives
will be easier.

First, take logs to simplify optimization

L(p) = log L(p) = log Pr (X1 = x1) +
∑
i,j

nij log pij (6)

Take the derivative:
∂L
∂pij

=
nij

pij
(7)

Set it equal to zero at p̂ij :
nij

pij
= 0 (8)

Conclude that all estimated transition probabilities should be∞.
What’s gone wrong?
We have failed to really come to grips with the parameters. They can’t all

change arbitrarily, because the probabilities of making transitions from a state
have to add up to 1. That is, for each i,∑

j

pij = 1 (9)
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This means that the number of degrees of freedom for transition matrices is not
m2, but m(m− 1).

There are at lest two ways of handling this: explicitly eliminating parame-
ters, and using Lagrange multipliers to enforce constraints.

1.1 Eliminating parameters

Arbitrarily pick one of the transition probabilities to express in terms of the oth-
ers. Say it’s 1, so for each i, pi1 = 1−

∑m
j=2 pij . Now when we take derivatives

of the likelihood, we leave out ∂/∂Pi1, and the other terms have changed:

∂L
∂pij

=
nij

pij
− ni1

pi1
(10)

Setting this equal to zero at the MLE p̂,

nij

p̂ij
=

ni1

p̂i1
(11)

nij

ni1
=

p̂ij

p̂i1
(12)

Since this holds for all j 6= 1, we can conclude that p̂ij ∝ nij , and in fact

p̂ij =
nij∑m

j=1 nij
(13)

Clearly, the choice of Pi1 as the transition probability to eliminate in favor of
the others is totally arbitrary and we get the same result for any other.

1.2 Lagrange multipliers

If you do not already know about Lagrange multipliers, I am not going to try to
explain them here; the basic story is that they are a way of doing optimization
under constraints without explicitly using the constraints to reduce the param-
eter space. Lots of applied math/math methods books have good discussions
(e.g. [1]); there is also a useful on-line tutorial [2].

We have m constraint equations,∑
j

pij = 1 (14)

one for each value of i. This means we need m Lagrange multipliers, λ1, λ2, . . . λm.
The new objective function is

L(P )−
j∑

i=1

λi

∑
j

pij − 1

 (15)
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Taking derivatives with respect to λi of course gives the ith constraint equation
back. Taking derivatives with respect to pij ,

0 =
nij

pij
− λi

λi =
nij

pij

pij =
nij

λi

Because of the constraint equation,

m∑
j=1

nij

λi
= 1 (16)

m∑
j=1

nij = λi (17)

leading to the same conclusion as we got by eliminating parameters outright.

2 Consistency of the MLE

We should really write estimates as functions of the data: p̂ij(xn
1 ). So our esti-

mate is really a realization of a random variable:

P̂ij = p̂ij(Xn
1 ) =

Nij∑
j Nij

(18)

We want this to converge on the true probability, p0
ij , so let’s look at the con-

vergence of the parts.
Nij can be written as a sum of indicator functions:

Nij =
n−1∑
t=1

Ix=i(xt)Ix=j(xt+1) (19)

Hence Nij/(n− 1) is the time average of an indicator function:

Nij

n− 1
=

1
n− 1

n−1∑
t=1

Ix=i(xt)Ix=j(xt+1) (20)

We know from the ergodic theorem (see notes to lecture 2) that time-averages
converge to expectations:

Nij

n− 1
→ E (Ix=i(xt)Ix=j(xt+1)) (21)
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and we know that the expectation of an indicator function is a probability:

E (Ix=i(xt)Ix=j(xt+1)) = Pr (Xt = i,Xt+1 = j) (22)

If we say that p0
i is the true long-run probability that Xt = i, we have

Pr (Xt = i,Xt+1 = j) = p0
i p

0
ij (23)

since p0
ij is a conditional probability. Put this together and we get

Nij

n− 1
→ p0

i p
0
ij (24)

and of course Nij/n converges to the same limit (which was what was given in
the lecture).

Now think about
∑

j Nij . If use 19, we get that

∑
j

Nij =
n−1∑
t=1

Ix=i(Xt) (25)

Pulling the same trick of dividing by n− 1,

1
n− 1

∑
j

Nij =
1

n− 1

n−1∑
t=1

Ix=i(Xt) → E (Ix=i(Xt)) (26)

So, since again the expectation of an indicator is a probability,

1
n− 1

∑
j

Nij → p0
i (27)

Now the estimator is

P̂ij =
Nij∑
j Nij

=
Nij/(n− 1)∑
j Nij/(n− 1)

(28)

The numerator converges to p0
i p

0
ij , the denominator to p0

i ; and since that is > 0,
the ratio converges to the ratio of the limits,

P̂ij →
p0

i p
0
ij

p0
i

= p0
ij (29)

as desired, and claimed.1

1If you have taken more advanced probability classes, you might wonder about the mode of
convergence here. Irreducible Markov chains satisfy the Birkhoff “individual” ergodic theorem,
which gives convergence almost surely. (See e.g. [3].) We need a ratio of two a.s. convergent
quantities to converge, and we can get that to happen by e.g. the almost-sure version of Slutsky’s
Theorem [4, p. 42].
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3 Alternate forms of the Fisher information

There are three forms of the Fisher information for Markov chains:

Iuv(θ) = −
∑
ij

pi(θ)pij(θ)
∂2 log pij(θ)

∂θu∂θv
(30)

Iuv(θ) =
∑
ij

pi(θ)
pij(θ)

∂pij(θ)
∂θu

∂pij(θ)
∂θv

(31)

and

Iuv(θ) = −
∑
ij

pi(θ)pij(θ)
∂ log pij(θ)

∂θu

∂ log pij(θ)
∂θv

(32)

To see that these are equivalent, start with the first, and use the chain rule for
derivatives.

− Iuv(θ) =
∑
ij

pi(θ)pij(θ)
∂2 log pij(θ)

∂θu∂θv
(33)

=
∑
ij

pi(θ)pij(θ)
∂

∂θu

∂ log pij(θ)
∂θv

(34)

=
∑
ij

pi(θ)pij(θ)
∂

∂θu
p−1

ij (θ)
∂pij(θ)

∂θv
(35)

=
∑
ij

pi(θ)pij(θ)
[
p−1

ij (θ)
∂2pij(θ)
∂θu∂θv

− p−2
ij (θ)

∂pij(θ)
∂θu

∂pij(θ)
∂θv

]
(36)

= −
∑
ij

pi(θ)
pij(θ)

∂pij(θ)
∂θu

∂pij(θ)
∂θv

+
∑

i

∂2

∂θu∂θv

∑
j

pij(θ) (37)

= −
∑
ij

pi(θ)
pij(θ)

∂pij(θ)
∂θu

∂pij(θ)
∂θv

+
∑

i

∂2

∂θu∂θv
1 (38)

= −
∑
ij

pi(θ)
pij(θ)

∂pij(θ)
∂θu

∂pij(θ)
∂θv

(39)

To see the equivalence between the second form and the third, note that

∂ log pij(θ)
∂θu

∂ log pij(θ)
∂θv

=
1

p2
ij(θ)

∂pij(θ)
∂θu

∂pij(θ)
∂θv

(40)

and substitute into the previous equation.

4 Markov Chains Form Exponential Families

This section will only make sense if you already know what an exponential
family is.
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Let’s look again at the equation for the log-likelihood, Eq. 6:

L(P ) = log Pr (X1 = x1) +
∑
i,j

nij log Pij (41)

This is the equation for the log-likelihood of an exponential family, in which
the canonical sufficient statistics are the nij and x1, and the natural parameters
are the log Pij and the log probabilities of the initial states. If we ignore the
initial distribution, or condition it away, or let it be separate from the transi-
tion probabilities, then the maximum-likelihood estimators follow straightfor-
wardly from the usual exponential family manipulations. If, on the other hand,
we connect the initial distribution to the transition matrix, say by making the
initial distribution the invariant distribution, then we really have a curved ex-
ponential family.

If the true transition matrix is P 0, with corresponding invariant distribution
p0

i , then one can show that

1
n
L(P ) →

∑
i

p0
i

∑
j

p0
ij log pij (42)

so the error in the log-likelihood introduced by ignoring the first term, log Pr (X1 = x1),
shrinks proportionately to zero.

5 Stochastic Finite Automata

We will deal only with machines where the current state and the next symbol
uniquely fix the next state. (These are generally, but unfortunately, called “de-
terministic” by computer scientists. Another name, less confusing for us, is
“resolving”, or “recursively updating”.)

Specifically, let’s say we have k states and m symbols. The probability of
state i emitting symbol j will be Qij . Finally, the matrix Tij gives us the state
reached from state i on symbol j.

Assume we observe the sequence xn
1 . If we knew the starting state was s1,

the corresponding sequence of states would be sn
1 , where st+1 = Tstxt . Thus

the conditional probability of the sequence xn
1 is

Pr (Xn
1 = xn

1 |S1 = s1) =
n∏

t=1

Qstxt (43)

and if we write Nij for the number of times state i emitted symbol j, we get

Pr (Xn
1 = xn

1 |S1 = s1) =
k∏

i=1

m∏
j=1

Q
Nij

ij (44)

Now the argument proceeds just as for the Markov chain, leading us to con-
clude that the MLE is

Q̂ij =
Nij∑
j Nij

(45)
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All of this is conditional on the starting state.
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