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Information Theory

Entropy and Information Measuring randomness and
dependence in bits

Relative Entropy The connection to statistics
Entropy and Ergodicity Long-run randomness

Single best book on information theory: [1]
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Entropy

Fundamental notion in information theory
X = a discrete random variable, values from X
The entropy of X is

H[X ] ≡ −
∑
x∈X

Pr (X = x) log2 Pr (X = x)

EXERCISE: Prove that H[X ] is maximal when all X are equally
probable, and then H[X ] = log2 #X .
EXERCISE: Prove that H[X ] ≥ 0, and = 0 only when
Pr (X = x) = 1 for some x .
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Interpretations

H[X ] measures
how random X is
How much variability X has
How uncertain we should be about X
“paleface” problem
consistent resolution leads to a completely subjective probability theory
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Description Length

Another, fundamental interpretation of H[X ]: how concise can
we make a description of X?
Imagine X as text message:

wtf?; lol; omg; o rly?; bored now;
what u doing 4 fri pm?; no i mean rly wtf?;
in reno;
in reno send money;
in reno divorce final;
in reno send lawyers guns and money k thx bye

I know what X is but won’t show it to you
You can guess it by asking yes/no (binary) questions
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First goal: ask as few questions as possible
Making the first question “is it y?” works, if X = y — but not
otherwise
New goal: minimize the mean number of questions
Ask about more probable messages first
Best you can do is get to x with about − log2 Pr (X = x)
questions
Mean is then H[X ]
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H[X ] is the minimum mean number of binary distinctions
needed to describe X

Units of H[X ] are bits

source

X

binary-coded message

length H[X]
receiver

H[f (X )] ≤ H[X ], equality if and only if f is invertible
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Multiple Variables — Joint Entropy

Joint entropy of two variables X and Y :

H[X , Y ] ≡ −
∑
x∈X

∑
y∈Y

Pr (X = x , Y = y) log2 Pr (X = x , Y = y)

Entropy of joint distribution
This is the minimum mean length to describe both X and Y

H[X , Y ] ≥ H[X ]

H[X , Y ] ≥ H[Y ]

H[X , Y ] ≤ H[X ] + H[Y ]

H[f (X ), X ] = H[X ]
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Conditional Entropy

Entropy of conditional distribution:

H[X |Y = y ] ≡ −
∑
x∈X

Pr (X = x |Y = y) log2 Pr (X = x |Y = y)

Average over y :

H[X |Y ] ≡
∑
y∈Y

Pr (Y = y) H[X |Y = y ]

On average, how many bits are needed to describe X , after Y
is given?

H[X |Y ] = H[X , Y ]− H[Y ]
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text completion principle
Note: H[X |Y ] 6= H[Y |X ], in general
Chain rule:

H[X n
1 ] = H[X1] +

n−1∑
t=1

H[Xt+1|X t
1]

Describe one variable, then describe 2nd with 1st, 3rd with first
two, etc.
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Mutual Information

Mutual information between X and Y

I[X ; Y ] ≡ H[X ] + H[Y ]− H[X , Y ]

How much shorter is the actual joint description than the sum of
the individual descriptions?
Equivalent:

I[X ; Y ] = H[X ]− H[X |Y ] = H[Y ]− H[Y |X ]

How much can I shorten my description of either variable by
using the other?

0 ≤ I[X ; Y ] ≤ min H[X ], H[Y ]

I[X ; Y ] = 0 if and only if X and Y are statistically independent
36-462 Lecture 7



Entropy and Information
Relative Entropy

Entropy and Ergodicity
References

noise

channel decoder
source

X
encoder

receiver

Y

How much can we learn about what was sent from what we
receive? I[X ; Y ]
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Historically, this is the origin of information theory: sending
coded messages efficiently [2]
channel capacity C = max I[X ; Y ] as we change distribution of
X
Any rate of information transfer < C can be achieved with
arbitrarily small error rate, no matter what the noise
No rate > C can be achieved without error
This is connected to how much money side information can
make you in gambling [3]
Historical dramatization: [4]
with silly late-1990s story tacked on
This is not the only model of communication! [5, 6]

36-462 Lecture 7



Entropy and Information
Relative Entropy

Entropy and Ergodicity
References

Conditional Mutual Information

I[X ; Y |Z ] = H[X |Z ] + H[Y |Z ]− H[X , Y |Z ]

How much extra information do X and Y give, over and above
what’s in Z?
X ⊥ Y |Z if and only if I[X ; Y |Z ] = 0
Markov property is completely equivalent to

I[X∞
t+1; X t−1

−∞|Xt ] = 0

Markov property is really about information flow
Generalization to partially-observed Markov processes:

I[X∞
t ; X t−1

−∞|St ] = 0
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Relative Entropy

P, Q = two distributions on the same space X

D(P‖Q) ≡
∑
x∈X

P(x) log2
P(x)

Q(x)

Or, if X is continuous,

D(P‖Q) ≡
∫
X

dx p(x) log2
p(x)

q(x)

a.k.a. Kullback-Leibler divergence
D(P‖Q) ≥ 0, with equality if and only if P = Q
D(P‖Q) 6= D(Q‖P), in general
Invariant under invertible functions
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Joint and Conditional Relative Entropies

P, Q now distributions on X ,Y

D(P‖Q) = D(P(X )‖Q(X )) + D(P(Y |X )‖Q(Y |X ))

where

D(P(Y |X )‖Q(Y |X )) =
∑

x

P(x)D(P(Y |X = x)‖Q(Y |X = x))

=
∑

x

P(x)
∑

y

P(y |x) log2
P(y |x)

Q(y |x)

and so on for more than two variables
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Relative Entropy and Miscoding

Suppose real distribution is P but we think it’s Q and we use
that for coding
Our average code length (cross-entropy) is

−
∑

x

P(x) log2 Q(x)

But the optimum code length is

−
∑

x

P(x) log2 P(x)

Difference is relative entropy
Relative entropy is the extra description length from getting the
distribution wrong
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Relative Entropy and Hypothesis Testing

Testing P vs. Q
Optimal error rate (chance of guessing Q when really P) goes
like

Pr (error) ≈ 2−nD(Q‖P)

More exact statement:

1
n

log2 Pr (error) → −D(Q‖P)

The bigger D(Q‖P), the harder they are to confuse, easier to
tell apart with a test
For dependent data, substitute sum of conditional relative
entropies for nD
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Relative entropy can be the basic concept

H[X ] = log2 m − D(U‖P)

where m = #X , U = uniform dist on X , P = dist of X

I[X ; Y ] = D(J‖P ×Q)

where P = dist of X , Q = dist of Y , J = joint dist
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Maximum likelihood and relative entropy

Data = X
True distribution of = P
Model distributions = Qθ, θ = parameter
Look for the Qθ which will best describe new data
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Best-fitting distribution

θ∗ = argmin
θ

D(P‖Qθ)

= argmin
θ

∑
x

P(x) log2
P(x)

Qθ(x)

= argmin
θ

∑
x

P(x) log2 P(x)− P(x) log2 Qθ(x)

= argmin
θ

−HP [X ]−
∑

x

P(x) log2 Qθ(x)

= argmin
θ

−
∑

x

P(x) log2 Qθ(x)

= argmax
θ

∑
x

P(x) log2 Qθ(x)

This is the expected log-likelihood
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We don’t know P but we do have a sample, the empirical
distribution P̂n
For IID case

θ̂ = argmax
θ

n∑
t=1

log Qθ(xt)

= argmax
θ

1
n

n∑
t=1

log2 Qθ(xt)

= argmax
θ

∑
x

P̂n(x) log2 Qθ(x)

So θ̂ comes from approximating P by P̂n
θ̂ → θ∗ because P̂n → P
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Non-IID case (e.g. Markov) goes similarly, more notation
This is related to the general problem of large deviations, and the theory
showing that large deviations are exponentially rare [7]
In general:
−H[X ]− D(P‖Q) = expected log-likelihood of Q
−H[X ] = optimal expected log-likelihood
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Relative Entropy and Fisher Information

Iuv (θ0) ≡ −Eθ0

 ∂2 log Qθ0(X )

∂θu∂θv

∣∣∣∣∣
θ=θ0


=

∂2

∂θu∂θv
D(Qθ0‖Qθ)

∣∣∣∣
θ=θ0

Fisher information is how quickly the relative entropy grows with
small changes in parameters

D(θ0‖θ0 + ε) ≈ εT Iε + O(‖ε‖2)

Intuition: “easy to estimate” is the same as “easy to reject
sub-optimal values”
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Entropy Rate

Entropy rate, a.k.a. Shannon entropy rate, a.k.a. metric
entropy rate

h1 ≡ lim
n→∞

H[Xn|X n−1
1 ]

Limit exists for any stationary process (and some others)
(Strictly, Strongly) Stationary: for any k > 0, T > 0, for all
w ∈ X k

Pr
(

X k
1 = w

)
= Pr

(
X k+T

1+T = w
)

Or: Probability distribution is invariant under the shift
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Examples of entropy rates
IID H[Xn|X n−1

1 ] = H[X1] = h1

Markov H[Xn|X n−1
1 ] = H[Xn|Xn−1] = H[X2|X1] = h1

k th-order Markov h1 = H[Xk+1|X k
1 ]

SFA H[Xn|X n
1 ] → H[Xn|Sn] = H[X1|S1] = h1
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Metric vs. Topological Entropy Rate

Using chain rule, can re-write h1 as

h1 = lim
n→∞

1
n

H[X n
1 ]

Remember topological entropy rate:

h0 = lim
n→∞

1
n

log2 Wn

where Wn = # allowed words of length n
H[X n

1 ] = log2 Wn if and only if each word is equally probable
Otherwise H[X n

1 ] < log2 Wn
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h0 = growth rate in number of allowed words, counting all
equally
h1 = growth rate, counting more probable words more heavily
— effective number of words
So:

h0 ≥ h1

2h1 is the effective number of choices of how to continue a long
symbol sequence
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Entropy Rate Measures Randomness

h1 = growth rate of mean description length of trajectories
Chaos needs h1 > 0
For symbolic dynamics, each partition B has its own h1(B)
Kolmogorov-Sinai (KS) entropy rate:

hKS = sup
B

h1(B)

THEOREM If G is a generating partition, then hKS = h1(G)
hKS is the asymptotic randomness of the dynamical system
or, the rate at which the symbol sequence provides new
information about the initial condition
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Entropy Rate and Lyapunov Exponents

In general (Ruelle’s inequality),

hKS ≤
d∑

i=1

λi1x>0(λi)

If the invariant measure is smooth, this is equality (Pesin’s
identity)
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Asymptotic Equipartition Property

When n is large, for any word xn
1 , either

Pr (X n
1 = xn

1 ) ≈ 2−nh1

or
Pr (X n

1 = xn
1 ) ≈ 0

More exactly, it’s almost certain that

−1
n

log Pr (X n
1 ) → h1

This is the entropy ergodic theorem or
Shannon-MacMillan-Breiman theorem
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Relative entropy version:

−1
n

log Qθ(X n
1 ) → h1 + d(P‖Qθ)

where
d(P‖Qθ) = lim

n→∞

1
n

D(P(X n
1 )‖Qθ(X n

1 ))

Relative entropy AEP is less general than entropy AEP
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