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In what senses can we say that chaos gives us
deterministic randomness?
Explaining “random” in terms of information
Chaotic dynamics and information

All ideas shamelessly stolen from [1]
Single most important reference on algorithmic definition of
randomness: [2]
But see also [3] on detailed connections to dynamics
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Probability Theory and Its Models

Probability theory is a theory — axioms & logical
consequences
Something which obeys that theory is one of its realizations
E.g., r = 1 logistic map, with usual generating partition, is a
realization of the theory of IID fair coin tossing
Can we say something general about realizations of probability
theory?
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Compression

Information theory last time: looked at compact coding random
objects
Coding and compression turn out to define randomness
Lossless compression: Encoded version is shorter than
original, but can uniquely & exactly recover original
Lossy compression: Can only get something close to original
Stick with lossless compression
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Lossless compression needs an effective procedure —
definite steps which a machine could take to recover the
original
Effective procedures are the same as algorithms
Algorithms are the same as recursive functions
Recursive functions are the same as what you can do with a
finite state machine and an unlimited external memory (Turing
machine)
For concreteness, think about programs written in a universal
programming language (Lisp, Fortran, C, C++, Pascal, Java,
Perl, OCaml, Forth, ...)
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x is our object, size |x |
Desired: a program in language L which will output x and then
stop
some trivial programs eventually output everything
e.g. 01234567891011121314 . . .

those programs are descriptions of x
What is the shortest program which will do this?
N.B.: print(x); is the upper bound on the description length
finite # programs shorter than that
so there must be a shortest
Length of this shortest program is KL(x)
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Why the big deal about universal computer?
1. Want to handle as general a situation as possible
2. Emulation: for any other universal language M, can write a
compiler or translator from L to M, so

KM(x) ≤ |CL→M |+ KL(x)

Which universal language doesn’t matter, much; and could use
any other model of computation
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Kolmogorov Complexity

The Kolmogorov complexity of x , relative to L, is

KL(x) = min
p∈D(x)

|p|

where D(x) = all programs in L that output x and then halt
This is the algorithmic information content of x
a.k.a. Kolmogorov-Chaitin complexity,
Kolmogorov-Chaitin-Solomonoff complexity...

1 ≤ KL(x) ≤ |x |+ c

where c is the length of the “print this” stuff
If KL(x) ≈ |x |, then x is incompressible
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Examples

“0”: K ≤ 1 + c
“0” ten thousand times: K ≤ 1 + log2 104 + c = 1 + 4 log2 10 + c
“0” ten billion times: K ≤ 1 + 10 log2 10 + c
“10010010” ten billion times: K ≤ 8 + 10 log2 10 + c
π, first n digits: K ≤ γ + log2 n
In fact, any number you care to name contains little algorithmic
information
Why?
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Incompressibility and randomness

Most objects are not very compressible
Exactly 2n objects of length n bits
At most 2k programs of length k bits
No more than 2k n-bit objects can be compressed to k bits
Proportion is ≤ 2k−n

At most 2−n/2 objects can be compressed in half
Vast majority of sequences from a uniform IID source will be
incompressible
“uniform IID” = “pure noise” for short
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More compressibility and randomness

Suppose x is a binary string of length n, with n � 1
If proportion of 1s in x is p, then

K (x) ≤ −n(p log2 p + (1− p) log2 1− p) + o(n) = nH(p) + o(n)

nH(p) < n if p 6= 1
2

Similarly for statistics of pairs, triples, ...
Suggests:

1 Most sequences from non-pure-noise sources will be
compressible

2 Incompressible sequences look like pure noise

ANY SIGNAL DISTINGUISHABLE FROM NOISE IS INSUFFICIENTLY

COMPRESSED
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Incompressible sequences look random

CLAIM 1: Incompressible sequences have all the effectively
testable properties of pure noise
CLAIM 2: Sequences which fail to have the testable properties
of pure noise are compressible
Redundancy |x | − KL(x) is distance from pure noise
If X is pure noise,

Pr (|X | − KL(X ) > c) ≤ 2−c

Power of this test is close to that of any other (computable) test
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Why the L doesn’t matter

Take your favorite sequence x
In new language L′, the program “!” produces x , any program
not beginning “!” is in L
Can make KL′(x) = 1, but makes others longer
But the trick doesn’t keep working
can translate between languages with constant complexity
still true that large incompressible sequences look like pure
noise
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ANY DETERMINISM DISTINGUISHABLE FROM RANDOMNESS IS

INSUFFICIENTLY COMPLEX

Poincaré said as much 100 years ago, without the math [4]
Excerpt on website
Extends to other, partially-compressible stochastic processes
The maximally-compressed description is incompressible
so other stochastic processes are transformations of noise

36-462 Lecture 8

http://www.stat.cmu.edu/~cshalizi/462/lectures/08/Poincare.pdf


Randomness and Algorithmic Information
References

The Problem

There is no algorithm to compute KL(x)
Suppose there was such a program, U for universal
Use it to make a new program C

1 Sort all sequences by length and then alphabetically
2 For sequence xt , use U to find KL(xt)

3 If KL(xt) ≤ |C|, keep going
4 Else return xt , call this z, and stop

So KL(z) > |C|, but C produces z and stops: contradiction
Due to [5], cited by [6].
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There is no algorithm to approximate KL(x)
In particular, gzip does not approximate KL(x)
Can never say: x is incompressible
Can say: most things are random
don’t know x isn’t random yet
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Mean Algorithmic Information and Entropy Rate

For an IID source

lim
n→∞

1
n

E [K (X n
1 )] = H[X1]

For a general stationary source

lim
n→∞

1
n

E [K (X n
1 )] = h1
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Algorithmic Information of Dynamical Systems

Kolmogorov complexity of a continuous state:

K (s) = sup
B

lim
n→∞

1
n

K (bn
1(s))

with
bn

1(s) = b(s), b(Φ(s)), b(Φ2(s)), . . . b(Φn(s))

If Φ is ergodic, then
BRUDNO’S THEOREM: with probability 1,

K (s) = hKS

independent of the initial state s
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In every testable way, typical chaotic symbol sequences look
like they’re generated by a stochastic process
Once again:

ANY DETERMINISM DISTINGUISHABLE FROM RANDOMNESS IS

INSUFFICIENTLY COMPLEX

The key is the sensitive dependence on initial conditions:

hKS ≤
d∑

i=1

λi1x>0(λi)

Instability reads out the algorithmic information which went into
the initial condition
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Why Does Attractor Reconstruction Need Determinism?

Attractor reconstruction only works if the attractor has finite
dimension
A random process is basically an infinite-dimensional
dynamical system
Use the shift-map representation
Attractor reconstruction breaks down when used on stochastic
processes
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Hand-waving about continuous variables

There’s a theory of universal computation on real numbers &
such
See Prof. Lenore Blum in SCS [7, 8, 9]
Or see Cris Moore
Works basically like discrete theory
Incompressibility results still there (more or less)
So ∃ incompressible sequences of continuous values
These come from chaotic infinite-dimensional dynamics
But: don’t know of rigorous proofs
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What About Finite-Dimensional Dynamics?

Three kinds of results:
1 About ensemble distributions, as in mixing
2 About projections — if we ignore some coordinates, the

others look like a stochastic process
3 About approximations — real trajectories are close to

those of stochastic processes [10]
Always some departures from randomness if we can see exact
state
E.g., always some function of st which gives us st+10100

even s
t+1010100

but function becomes harder and harder to evaluate, needs
more and more data
This gets into subtle topics in approximation theory
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Summing Up

Probability tells us what random processes look like
Incompressibility gives us realizations of those theories
Coarse-graining of unstable deterministic dynamics gives us
incompressibility
Randomness can be produced by fully deterministic processes
Stochastic modeling works even in a fully deterministic but
chaotic world

ANY SIGNAL DISTINGUISHABLE FROM NOISE IS INSUFFICIENTLY

COMPRESSED

ANY DETERMINISM DISTINGUISHABLE FROM RANDOMNESS IS

INSUFFICIENTLY COMPLEX

TOO MUCH OF A GOOD THING IS WONDERFUL
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