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Where Do Heavy Tails Come From?

Change of Variables Some very boring explanations
Growing by Multiplying A somewhat boring explanation
Critical Fluctuations An exciting and mysterious explanation

More reading: Newman (2005); Mitzenmacher (2004);
Schroeder (1991) for some fun examples I can’t fit in here
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Change of Variables: Take Logarithms

Suppose X ∼ Pareto(α, xmin)
Define Y ≡ ln X/xmin

F ↑(y) = Pr (Y ≥ y) = Pr (X ≥ xminey )

=

(
xminey

xmin

)−(α−1)

= e−(α−1)y

Y ∼ Exp(α− 1)

Conclusion: things only look heavy-tailed because you’re
measuring the exponential of what you should be measuring
Makes sense sometimes... but hard to get behind the idea of
“log population” or “log money”
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Change of Variables: Small Denominators

After Sornette (2002)
Let X ∼ Whatever
Y ≡ X−1/a ⇒

fY (y) = α
fX (y−α)

y1+α

If fX (x)→ c as x → 0 then for large y

fY (y) = O(y1+α)

Story: we measure the reciprocal of something which should be
sensibly-distributed; flat distribution near zero gets turned into a
heavy tail towards infinity
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Mixtures of Exponentials

Maguire et al. (1952); Beck (2005)
Exponential variables, with Γ-distributed rates:

X |Λ ∼ Exp(Λ/s)

Λ ∼ Γ(α, 1)

What is the distribution of X?

Pr (X ≥ x) =

Z ∞

0
dλ λα−1 e−λ

Γ(α)

Z ∞

x
dy

λ

s
e−λy/s

=

Z ∞

0
dλ λα−1 e−λ

Γ(α)
e−λx/s

=

Z ∞

0
dλ λα−1 e−λ(1+x/s)

Γ(α)

=

Z ∞

0
dµ(1 + x/s)−1 µα−1(1 + x/s)−(α−1) e−µ

Γ(α)

= (1 + x/s)−α

which is the “Pareto II” distribution
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Multiplicative Growth: Lognormal

Recall central limit theorem: Xi all IID, E [Xi ] = µ, Var [Xi ] = σ2,
then

n∑
i=1

Xi  N (nµ, nσ2)

Now let Yi = eXi :
n∏

i=1

Yi  eN (nµ,nσ2)
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Issue: CLT is really

1
n

n∑
i=1

Xi  N (µ, σ2/n)

so
n∏

i=1

Yi  enN (µ,σ2/n)+o(n)

and eo(n) is not necessarily small!
Put a little differently, the center of the distribution will become
log-normal much faster than the tails
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Multiplicative Growth: Exponential Growth with Random
Origins

Reed and Hughes (2002)
Imagine many piles
Each pile grows exponentially

Xi(t) = x0eλ(t−Ti )

piles start growing at random times
= with constant probability per unit time

t − Ti ∼ Exp(µ)
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What is the distribution of pile sizes?

Pr (Xi ≥ x) = Pr
(

eλ(t−Ti ) ≥ x/x0

)
= Pr (λ(t − Ti) ≥ ln x/x0)

= Pr
(

t − Ti ≥
ln x/x0

λ

)
= e−µ

ln x/x0
λ =

(
x
x0

)−µ/λ

X ∼ Pareto(µ/λ + 1, x0)

Still works if it’s only average size that grows exponentially
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Imagine doing this for cities; λ = µ = 1/100

> t.start = 2000-rexp(500,rate=1/100)
> summary(t.start)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1327 1852 1927 1892 1969 2000

> plot.new()
> plot.window(xlim=c(min(t.start),2000),ylim=c(1,500),xlab="starting time")
> points(t.start,1:500,pch=22)
> axis(3)
> axis(1)
> sizes.now = exp((1/100)*(2000-t.start))
> plot.new()
> plot.window(xlim=c(0,max(sizes.now)),ylim=c(1,500))
> lines(sizes.now,1:500)
> axis(1)
> axis(3)
> plot.survival.loglog(sizes.now,xlab="present size",ylab="survival function")
> curve(ppareto(x,1,2,lower.tail=FALSE),col="blue",add=TRUE)

For US, min Ti = 1327 is not crazy, oldest city is Acoma, N.M., from 12th century —

but otherwise?
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Problems: Acoma is not the largest city in the US; largest city is
8× 106 larger than smallest, not 8× 102 larger
Another model: make X (t) log-normal

ln X (t)/x0 ∼ N ((µ− σ2

2
)(t − ti), σ2(t − ti))

Then E [X (t)] = x0eµ(t−ti )

This comes from a simple multiplicative growth model, geometric Brownian motion

dX
dt

= µX + σXξ

with ξ = white noise
Unfortunately a real explanation needs stochastic calculus set µ = σ2 = 0.01

> sizes.gbm = rlnorm(500,(0.01-0.005)*(2000-t.start),0.01*(2000-t.start))
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0 2000 4000 6000 8000 10000

starting times sizes at t = 2000

max X/ min X now 2× 106, a bit small but in the right ballpark
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Yule-Simon Mechanism

Simon (1955); Ijiri and Simon (1977)
a.k.a. “the rich get richer”, “Matthew Effect”, “preferential
attachment” . . .
Again with the piles, but now discrete
One lump arrives each time step
Starts new pile with probability ρ
Otherwise joins an existing pile, probability of joining some pile
of size k is ∝ k
not necessarily equally likely to join every pile of the same size

What is the limiting distribution of pile sizes?
Nk (t) = number of piles of size k , after t time-steps
Assume Nk (t)→ pk t
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If k ≥ 2,

Pr (Nk (t + 1) = Nk (t) + 1) = (1− ρ)(k − 1)
Nk−1(t)

t

Pr (Nk (t + 1) = Nk (t)− 1) = (1− ρ)k
Nk (t)

t

E [Nk (t + 1)]− Nk (t) = (1− ρ)
(k − 1)Nk−1(t)− kNk (t)

t
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As t →∞, we want Nk (t)→ pk t

pk (t + 1)− pk t = (1− ρ)
(k − 1)pk−1t − kpk t

t
pk = (1− ρ) ((k − 1)pk−1 − kpk )

pk (1 + (1− ρ)k) = (1− ρ)(k − 1)pk−1

pk

pk−1
=

(1− ρ)(k − 1)

1 + (1− ρ)k

36-462 Lecture 14



Change of Variables
Multiplicative Growth
Critical Fluctuations

References

Define α = 1/(1− ρ)

pk

pk−1
=

k − 1
α + k

pk =
k − 1
α + k

pk−1

=
k − 1
α + k

k − 2
α + k − 1

pk−2

=
(k − 1)(k − 2) . . . 2 · 1

(α + k)(α + k − 1) · (α + 1)
p1

=
Γ(k)Γ(α + 1)

Γ(k + α + 1)
p1 = B(k , α + 1)p1

Using normalization,

pk = αB(k , α + 1) = O(k−α+1)
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Why physicists expect Gaussian fluctuations around
equilibrium

Probability of macroscopic variables M having value m
(Einstein fluctuation formula):

Pr (M = m) ∝ eS(m)

Equilibrium m∗ = state of maximum entropy, so ∂S/∂m = 0 at
m∗; Taylor expansion in the exponent:

Pr (M = m∗) ∝ eS(m∗)+ 1
2

∂2S(m∗)

∂m2 (m−m∗)2+h.o.t.

∝ e
1
2

∂2S(m∗)

∂m2 (m−m∗)2+h.o.t.

drop the h.o.t.

M ∼ N (m∗,−∂2S(m∗)

∂m2 )
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What’s really going on

correlations are short range
⇒ rapid approach to independence, exponential mixing
⇒ central limit theorem for averages over space (and time)
⇒ Gaussians
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Phase Transitions

See Yeomans (1992) for nice introduction
Basically, bifurcations: behavior changes suddenly as
temperature (or pressure or other control variable) crosses
some threshold
First order: entropy is discontinuous at critical point
Examples: ice/water at 273K (and standard pressure); water/steam at 373K
order parameter is discontinuous
Second order: derivative of entropy is discontinuous
Example: “Curie point”, permanent magnetization/not in iron 1043K
order parameter continuous but with sharp kink
like amplitude of limit cycle in period-doubling
Focus on continuous (second-order) case
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Critical fluctuations

Entropy story breaks down because derivatives → ±∞
Competition between two phases, no preference, one can pop
up in the middle of the other
Fluctuations get arbitrarily large ⇒ long-range correlations ⇒
slow mixing (if any)
Assemblage becomes self-similar: magnify a small part and it
looks just like the whole thing (“renormalization”)
only strictly true for infinitely big assemblages
averaging must lead to a self-similar distribution
Power laws are self-similar (scale-free)
Conclusion: at critical point, expect to see power law
distributions
Landau and Lifshitz (1980); Keizer (1987) are good on details but advanced
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Theory of phase transitions / critical phenomena / order
parameters / renormalization one of the key developments in
physics over the last half century (Yeomans, 1992; Domb,
1996)
⇒ physicists think criticality is Very Cool
Criticality ⇒ power law distributions
so physicists tend to think:

(i) ¬ power laws ⇒ ¬ critical ⇒ Bored Now
(ii) power laws ⇒ critical → Very Cool

(ii) is called “the fallacy of affirming the consequent”
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Self-Organized Criticality

See Miller and Page; papers: Bak et al. (1987); Carlson and Swindle (1995);
Dickman et al. (2000); Bak (1996) if heavily salted
No externally set control parameter
Instead, external driving + interactions tend to keep the system
towards a critical point
Turns out (Dickman et al., 2000) that this is another version of
the same story, only with the driving rate tuned very low
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Morals

1 There are many ways to obtain heavy-tailed distributions,
with or without power law tails

2 Some of these mechanisms make different predictions
about the distributions

3 Even if they do not, they make different predictions about
the dynamics

4 Both distributions and dynamics can be used to learn
about mechanisms
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