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Where Do Heavy Tails Come From?

Change of Variables Some very boring explanations
Growing by Multiplying A somewhat boring explanation
Critical Fluctuations An exciting and mysterious explanation

More reading: Newman (2005); Mitzenmacher (2004);
Schroeder (1991) for some fun examples | can't fit in here
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Change of Variables

Change of Variables: Take Logarithms

Suppose X ~ Pareto(«, Xmin)
Define Y = In X/ Xuin

Fi(y) = Pr(Y>y)=Pr(X > Xnn€)
_ (aney> T ey

Xmin

Y ~ Exp(a—1)

Conclusion: things only look heavy-tailed because you're
measuring the exponential of what you should be measuring
Makes sense sometimes... but hard to get behind the idea of
“log population” or “log money”
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Change of Variables

Change of Variables: Small Denominators

After Sornette (2002)
Let X ~ Whatever
y=Xx"1a=

fo(y—
fr(y)=«a X}E1y+a )

If fx(x) — c as x — 0 then for large y

fr(y) = O(y'**)

Story: we measure the reciprocal of something which should be
sensibly-distributed; flat distribution near zero gets turned into a
heavy tail towards infinity
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Change of Variables

Mixtures of Exponentials

Maguire et al. (1952); Beck (2005)
Exponential variables, with I'-distributed rates:
X|N ~  Exp(A/s)
AN~ (1)

What is the distribution of X?

Pr(X>x) = /Ood)\A“*1£/oodyie**y/s
0 Ma) Jx S

oo 67)‘
/ dx /\0‘71767»(/5
0 M(a)

00 —A(14x/s)
/ ayre-1e
0 M)

= -1 a- ~(a-n & "
a1+ x/9)7 e+ x9) o

(1+x/s)~¢

which is the “Pareto II” distribution
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Multiplicative Growth

Multiplicative Growth: Lognormal

Recall central limit theorem: X; all IID, E [Xj] = p, Var [X]] = 02,

then ;
> X~ N(np, no®)
i—1
Now let Y; = e¥i:
f[ Y~ gV (mno?)
i—1
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Multiplicative Growth

Issue: CLT is really

IS X N 02/m)

i=1

o)
n
H Y~ enN(u,az/n)+o(n)
=1

and e°(" is not necessarily small!

Put a little differently, the center of the distribution will become
log-normal much faster than the tails
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Multiplicative Growth

Multiplicative Growth: Exponential Growth with Random
Origins

Reed and Hughes (2002)
Imagine many piles
Each pile grows exponentially

Xi(t) = xpeM=T)

piles start growing at random times
= with constant probability per unit time

t— T; ~ Exp(n)
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Multiplicative Growth

What is the distribution of pile sizes?

Pr(X;>x) = Pr(e’\(t*T’)Zx/x(J):Pr()\(t—T,-)zInx/xo)
B In x/xo
(o 0

Inx/xg X —p/A
— e_p‘f — _
Xo

X ~ Pareto(u/A+1,Xp)

Still works if it's only average size that grows exponentially
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Multiplicative Growth

Imagine doing this for cities; A = ¢ = 1/100

> t.start = 2000-rexp (500, rate=1/100)
summary (t.start)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1327 1852 1927 1892 1969 2000
plot.new ()
plot.window (xlim=c (min(t.start),2000),ylim=c(1l,500),xlab="starting t
points (t.start,1:500,pch=22)
axis (3)
axis (1)
sizes.now = exp((1/100)«(2000~-t.start))
plot.new()
plot.window (xlim=c (0, max (sizes.now)),ylim=c(1,500))
lines (sizes.now, 1:500)
axis (1)
axis (3)
plot.survival.loglog(sizes.now,xlab="present size",ylab="survival fu
curve (ppareto(x,1,2, lower.tail=FALSE), col="blue", add=TRUE)

\

VV VYV VYV VVVVYVYVYV

For US, min T; = 1327 is not crazy, oldest city is Acoma, N.M., from 12th century —
but otherwise?
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Multiplicative Growth
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Multiplicative Growth
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Multiplicative Growth

Problems: Acoma is not the largest city in the US; largest city is
8 x 10° larger than smallest, not 8 x 102 larger
Another model: make X(t) log-normal

o2

InX(#)/x0 ~ N((1 = 5 )(t = 1), o?(t - 1))
Then E [X(1)] = xoe(=1)
This comes from a simple multiplicative growth model, geometric Brownian motion

ax

— =puX X
ot uX + o X¢

with & = white noise
Unfortunately a real explanation needs stochastic calculus Set p = o2 = 0.01

> sizes.gbm = rlnorm (500, (0.01-0.005) % (2000-t.start),0.01%(2000-t.star
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Multiplicative Growth
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max X/ min X now 2 x 108, a bit small but in the right ballpark
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Multiplicative Growth
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Multiplicative Growth

Yule-Simon Mechanism

Simon (1955); ljiri and Simon (1977)

a.k.a. “the rich get richer”, “Matthew Effect”, “preferential
attachment” ...

Again with the piles, but now discrete

One lump arrives each time step

Starts new pile with probability p

Otherwise joins an existing pile, probability of joining some pile
of size kis « k

not necessarily equally likely to join every pile of the same size

What is the limiting distribution of pile sizes?

Nk(t) = number of piles of size k, after t time-steps
Assume Ni(t) — pkt
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Multiplicative Growth

Itk > 2,

Pr(Nk(t+1) = Ne(t) +1) = (1 —p)(k—1)Nk—1(t)

t
Pr(Ne(t+1)=Ne(t) —1)=(1— p)kat(t)
E [Ni(t+1)] = Ne(t) = (1 — p) (k- 1)Nk1t(t) — KNk (1)

36-462 Lecture 14



Multiplicative Growth

As t — oo, we want Ni(t) — pxt

(k —1)pk—_1t — kpt

px(t+1)—pct = (1-p) ;
pr = (1—p)((k—1)Pk-1 — kpx)
pc(1+(1 —p)k) = (1 —p)(k—1)px_1
P (=p(k-1)
Pk—1 1T+(1-p)k
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Multiplicative Growth

Define a =1/(1 —p)

_Pr
Pk—1

Pk =

Using normalization,

k-1

a+k

k-1

a+kPk71

k-1 k-2

atkatk_1P2
(k—1)(k—2)...2-1

@t katk_1) - (ar D"

rKra+1)
mm = B(k, o+ 1)p4

px = aB(k,a +1) = O(k—**+1)
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Critical Fluctuations

Why physicists expect Gaussian fluctuations around
equilibrium

Probability of macroscopic variables M having value m
(Einstein fluctuation formula):

Pr(M = m) x e5(™

Equilibrium m* = state of maximum entropy, so 9S/0m = 0 at
m*; Taylor expansion in the exponent:

Pr(M=m") «x e S(m* )+1%(m m*)?+h.o.t.

~ e%%(m m*)2+h.o.t.

drop the h.o.t.

. 02S(m*)
M~ N~ )
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Critical Fluctuations

What'’s really going on

correlations are short range
= rapid approach to independence, exponential mixing

= central limit theorem for averages over space (and time)
= Gaussians
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Critical Fluctuations

Phase Transitions

See Yeomans (1992) for nice introduction

Basically, bifurcations: behavior changes suddenly as
temperature (or pressure or other control variable) crosses
some threshold

First order: entropy is discontinuous at critical point
Examples: ice/water at 273K (and standard pressure); water/steam at 373K
order parameter is discontinuous

Second order: derivative of entropy is discontinuous
Example: “Curie point”, permanent magnetization/not in iron 1043K
order parameter continuous but with sharp kink

like amplitude of limit cycle in period-doubling

Focus on continuous (second-order) case
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Critical Fluctuations

Critical fluctuations

Entropy story breaks down because derivatives — +oo
Competition between two phases, no preference, one can pop
up in the middle of the other

Fluctuations get arbitrarily large = long-range correlations =
slow mixing (if any)

Assemblage becomes self-similar: magnify a small part and it
looks just like the whole thing (“renormalization”)

only strictly true for infinitely big assemblages

averaging must lead to a self-similar distribution

Power laws are self-similar (scale-free)

Conclusion: at critical point, expect to see power law
distributions

Landau and Lifshitz (1980); Keizer (1987) are good on details but advanced
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Critical Fluctuations

Theory of phase transitions / critical phenomena / order
parameters / renormalization one of the key developments in
physics over the last half century (Yeomans, 1992; Domb,
1996)

= physicists think criticality is Very Cool

Criticality = power law distributions

so physicists tend to think:

(i) — power laws = — critical = Bored Now
(if) power laws =- critical — Very Cool

(i) is called “the fallacy of affirming the consequent”
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Critical Fluctuations

Self-Organized Criticality

See Miller and Page; papers: Bak et al. (1987); Carlson and Swindle (1995);
Dickman et al. (2000); Bak (1996) if heavily salted

No externally set control parameter

Instead, external driving + interactions tend to keep the system
towards a critical point

Turns out (Dickman et al., 2000) that this is another version of
the same story, only with the driving rate tuned very low
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Critical Fluctuations

Morals

@ There are many ways to obtain heavy-tailed distributions,
with or without power law tails

© Some of these mechanisms make different predictions
about the distributions

© Even if they do not, they make different predictions about
the dynamics

© Both distributions and dynamics can be used to learn
about mechanisms
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