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New Assignment: Implement Butterfly Mode in R
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Real Agenda: Networks

Basics and Examples
Some Examples
Bipartite Networks
Network Properties

Further reading: Newman (2003) (assigned); Watts (2004)
(assigned); Scott (2000) (old-school social network theory);
Wasserman and Faust (1994) (the Bible, but, like the Bible, can be
very detailed and very dull. . . )

36-462 Lecture 20



Networks: Basics and Examples
Networks: Properties of Nodes, Edges, Graphs

Simple and Complex Networks
References

Basic Defintions

Network/graph consists of nodes and edges
Nodes/vertices things of some sort; say n of them
Edges/links/ties binary relationship between nodes; directed

or undirected
In-degree/Out-degree number of links to/from a node
Adjacency matrix n × n binary matrix, Aij = 1 if there is an

edge from i to j , = 0 otherwise
Sub-graph subset of nodes, plus all the edges between them

Path contiguous series of edges (respecting direction)
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The adjacency matrix A says which nodes are directly linked
The powers of A are linked by paths: Ak

ij = 0 iff there is no path
of length k from i to j ; otherwise Ak

ij counts the number of paths
Nodes are connected when there’s a path linking them
Networks break up into connected components (possibly just
one), which are sub-graphs
(geodesic) Distance between nodes = number of edges in
shortest path; ∞ if no such path
Betweenness of a node/edge: how many shortest paths
between pairs of (other) nodes go through this?
Discounted for number of shortest paths between a given pair; formula is
messy
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Some Examples

Unless otherwise noted, pictures snarfed from
http://www-personal.umich.edu/~mejn/networks/,
see there for full credits
Use the GraphViz programs to draw your own graphviz.org
Several R packages for networks, mostly called “social
networks”; igraph (on CRAN) may be best

36-462 Lecture 20

http://www-personal.umich.edu/~mejn/networks/
graphviz.org


Networks: Basics and Examples
Networks: Properties of Nodes, Edges, Graphs

Simple and Complex Networks
References

Nodes: autonomous systems on the Internet
Edge relationship: “passes packets to”
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Nodes: scientists at Santa Fe Institute, late 1990s-early 2000s
Edge relationship: “wrote paper with”
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Nodes: Paul Erdős and co-authors
Edge relationship: “wrote paper with”
From Vladis Krebs, http://www.orgnet.com/Erdos.html
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Nodes: Top-selling political books on Amazon, 2004
Edge relationship: “customers also bought . . . ”
Also by Krebs
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Opponents of the nomination of Louis Brandeis to the Supreme Court, 1916;
diagram by James Butler Studley; via Eric Rauchway’s blog
Apparently oldest known social network diagram
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Nodes: high school students (colored by race)
Edge relationship: “claims to be friends with”
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Nodes: high school students
Edge relationship: “dates”
Limited to largest connected component
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Nodes: people in Colorado Springs, early 1980s (color = HIV status)
Edge relationship: “bonks and/or shares needle”
Limited to largest connected component
Re-drawn by Newman from Potterat et al. (2002)
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Nodes: plant and animal species in lake
Edge relationship: “eats”
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Back to the anti-Brandeis network

Two kinds of nodes: people and institutions
Multi-component network: here two components, so also
called bipartite
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Bipartite Graphs: Collaboration networks

women in Natchez, MS. in 1930s/social events (“Southern
Women” data, Davis et al. (1941) as cited by Freeman
(2003))
actors/movies (“Kevin Bacon game”)
scientists/papers (many papers by Newman et al.)
musicians/albums (several papers on jazz)
superheroes/comic books (Alberich et al., 2002)
company directors/corporate boards (a.k.a. “the power
elite”)
campaign donors/politicians
words/documents
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Analyzing Bipartite Networks

1. “project down” to one component, nodes linked if they have a
common partner in other component
as in SFI and Erdős collaboration graphs
2. special techniques for bipartite networks, based on Galois
lattices:

smaller and smaller groups of people who have more and
more in common
smaller and smaller sets of projects common to more and
more people
hierarchies coincide

Good at describing community structure, may revisit in later
lecture
Freeman and White (1993); White and Duquenne (1996); Roth and Bourgine
(2003, 2005)
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Small World Property

Diameter: maximum distance between two nodes
Six degrees of separation: The diameter of the social network
is no more than 6.
What exactly would that mean?
Small world property: diameter is O(log n), n = number of
nodes
Made famous by Milgram, apparently on rather dubious
evidence (Kleinfeld, 2002)
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The small world property is mathematically easy:
Assume each node has about k neighbors
Assume those neighbors have few neighbors in common
(≈ 1)
Pick an arbitrary node; how many nodes can be reached in
t steps?
Clearly ≈ (k − 1)t

To find diameter set n ≈ (k − 1)d

d ≈ log n/ log k − 1
Argument runs in to trouble when paths from the starting node
begin to cross each other
We’ll revisit this later when talking about contagion
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Random Walks and Centrality

Random walk on a network:
1 Start at an arbitrary node
2 Pick a neighbor, uniformly at random, and go there
3 Go to step 2

This is a Markov chain. . .
EXERCISE: Explain how to get its transition matrix from the adjacency matrix
. . . on a finite, connected state space. . .
at least on each connected component of the graph . . . so it goes to a
unique invariant distribution (ergodic theorem)
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What is this invariant distribution like?

pi =
∑

j:Aji=1

pj
1∑n

k=1 Ajk

pi ↑ in-degree of i (many places to reach it)
Pr (j → i) ↓ out-degree of j (many places it could go)
Pr (j → i) ↑ probability of j
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Centrality

Important nodes are ones which are major neighbors of other
important nodes
Sounds like: “Celebrities are people who are famous for being
well-known”
but not viciously circular
This probability is (Bonacich) centrality (Scott, 2000, pp.
87–88, 97–99)
There are other centrality measures, see Scott
In essence, this is page-rank
See also: eigenfactor.org for ranking scientific journals
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Simple versus Complex Networks

Rough notion of “complex”: many strongly interdependent parts
Networks clearly have many parts. . .
Simple networks by way of contrast to complex ones

1 Completely regular, deterministic lattices (grids, etc.)
2 Completely random graphs (Erdős-Rényi model)
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Erdős-Rényi Model

Erdős: “A mathematician is a machine for turning
amphetamines into proofs” often bowlderized into “coffee”

Actually also done by Solomonoff/Rapoport, possibly others. . .
Not realistic but (1) cute math and (2) gives a kind of baseline
Model specification:

n nodes (fixed)
Each possible edge exists with probability p, independent
of all other edges
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Degree of node i = Ki

Ki ∼ Binom(n − 1, p)

Why n − 1?
Take limit N →∞, p → 0, np = λ = constant

Ki  Pois(λ)

If λ > λc , one connected component has size ∝ n (“giant
component”), small world property in giant component
THOUGHT EXERCISE: Try to guess λc
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Limitations

Degree distribution Rarely binomial/Poisson; often highly
skewed; sometimes, arguably, power-law tailed

Reciprocity In directed networks, Aij = Aji more often than
you’d expect from chance

Transitivity If Aij = 1 and Ajk = 1, higher odds that Aik = 1
clustering coefficients measure this transitivity
(counting triangles)

Homophily/Assortativeness Aij = 1 is more likely if i and j are
similar — or, in some networks, dis-similar
Social networks tend to be assortative by degree,
technological networks tend to be dis-assortative (Newman
and Park, 2003)
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Can make some of these limitations go away in
inhomogeneous Erdős-Rényi models, with different p between
different types of nodes (Clauset et al., 2007)
Will see other models of networks, with more complexity, next
time
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