Chaos, Complexity, and Inference (36-462) Lecture 20

Cosma Shalizi

1 April 2008

イロト イポト イヨト イヨト

= 900

New Assignment: Implement Butterfly Mode in R

イロト イポト イヨト イヨト 一座

Real Agenda: Networks

Basics and Examples

Some Examples

Bipartite Networks

Network Properties

Further reading: Newman (2003) (assigned); Watts (2004) (assigned); Scott (2000) (old-school social network theory); Wasserman and Faust (1994) (the Bible, but, like the Bible, can be very detailed and very dull...)

くロト (過) (目) (日)

Basic Defintions

Network/graph consists of **nodes** and **edges** Nodes/vertices things of some sort; say *n* of them Edges/links/ties binary relationship between nodes; **directed** or **undirected**

In-degree/Out-degree number of links to/from a node

- Adjacency matrix $n \times n$ binary matrix, $A_{ij} = 1$ if there is an edge from *i* to *j*, = 0 otherwise
 - Sub-graph subset of nodes, plus all the edges between them Path contiguous series of edges (respecting direction)

イロト イポト イヨト イヨト 一座

The adjacency matrix A says which nodes are directly linked The powers of A are linked by paths: $A_{ii}^{k} = 0$ iff there is no path of length k from i to j; otherwise A_{ii}^k counts the number of paths Nodes are **connected** when there's a path linking them Networks break up into connected components (possibly just one), which are sub-graphs (geodesic) Distance between nodes = number of edges in shortest path; ∞ if no such path Betweenness of a node/edge: how many shortest paths between pairs of (other) nodes go through this? Discounted for number of shortest paths between a given pair; formula is messv

< □ > < 同 > < 三 > <

Some Examples

Unless otherwise noted, pictures snarfed from

http://www-personal.umich.edu/~mejn/networks/, see there for full credits Use the GraphViz programs to draw your own graphviz.org Several R packages for networks, mostly called "social networks"; igraph (on CRAN) may be best

イロト イ押ト イヨト イヨトー

Nodes: autonomous systems on the Internet Edge relationship: "passes packets to"

イロト イヨト イヨト イ

э

Nodes: scientists at Santa Fe Institute, late 1990s-early 2000s Edge relationship: "wrote paper with"

Nodes: Top-selling political books on Amazon, 2004 Edge relationship: "customers also bought ..." Also by Krebs

Opponents of the nomination of Louis Brandeis to the Supreme Court, 1916; diagram by James Butler Studley; via Eric Rauchway's blog Apparently oldest known social network diagram

Nodes: high school students (colored by race) Edge relationship: "claims to be friends with"

ヘロン 人間 とくほど くほとう

Nodes: high school students Edge relationship: "dates" Limited to largest connected component

A B > 4
 B > 4
 B

э

Nodes: people in Colorado Springs, early 1980s (color = HIV status) Edge relationship: "bonks and/or shares needle" Limited to largest connected component Re-drawn by Newman from Potterat *et al.* (2002)

э

Nodes: plant and animal species in lake Edge relationship: "eats"

ъ

Back to the anti-Brandeis network

Two kinds of nodes: people and institutions **Multi-component** network: here two components, so also called **bipartite**

Bipartite Graphs: Collaboration networks

- women in Natchez, MS. in 1930s/social events ("Southern Women" data, Davis *et al.* (1941) as cited by Freeman (2003))
- actors/movies ("Kevin Bacon game")
- scientists/papers (many papers by Newman et al.)
- musicians/albums (several papers on jazz)
- superheroes/comic books (Alberich et al., 2002)
- company directors/corporate boards (a.k.a. "the power elite")
- campaign donors/politicians
- words/documents

イロト イポト イヨト イヨト 三連

Analyzing Bipartite Networks

1. "project down" to one component, nodes linked if they have a common partner in other component

as in SFI and Erdős collaboration graphs

2. special techniques for bipartite networks, based on **Galois** lattices:

- smaller and smaller groups of people who have more and more in common
- smaller and smaller sets of projects common to more and more people
- hierarchies coincide

Good at describing community structure, may revisit in later lecture

Freeman and White (1993); White and Duquenne (1996); Roth and Bourgine (2003, 2005)

Small World Property

Diameter: maximum distance between two nodes **Six degrees of separation**: The diameter of the social network is no more than 6.

What exactly would that mean?

Small world property: diameter is $O(\log n)$, n = number of nodes

Made famous by Milgram, apparently on rather dubious evidence (Kleinfeld, 2002)

イロト イポト イヨト イヨト 一座

The small world property is *mathematically* easy:

- Assume each node has about k neighbors
- Assume those neighbors have few neighbors in common (≈ 1)
- Pick an arbitrary node; how many nodes can be reached in *t* steps?
- Clearly $\approx (k-1)^t$
- To find diameter set $n \approx (k-1)^d$
- $d \approx \log n / \log k 1$

Argument runs in to trouble when paths from the starting node begin to cross each other

We'll revisit this later when talking about contagion

イロト イポト イヨト イヨト 一座

Random Walks and Centrality

Random walk on a network:

- Start at an arbitrary node
- Pick a neighbor, uniformly at random, and go there
- Go to step 2

This is a Markov chain...

EXERCISE: Explain how to get its transition matrix from the adjacency matrix

... on a finite, connected state space...

at least on each connected component of the graph ... so it goes to a unique invariant distribution (ergodic theorem)

ヘロト 人間 ト ヘヨト ヘヨト

What is this invariant distribution like?

$$p_j = \sum_{j:A_{jj}=1} p_j rac{1}{\sum_{k=1}^n A_{jk}}$$

 $p_i \uparrow \text{ in-degree of } i \text{ (many places to reach it)}$ $\Pr(j \to i) \downarrow \text{ out-degree of } j \text{ (many places it could go)}$ $\Pr(j \to i) \uparrow \text{ probability of } j$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Centrality

Important nodes are ones which are major neighbors of other important nodes

Sounds like: "Celebrities are people who are famous for being well-known"

but not viciously circular

This probability is (**Bonacich**) **centrality** (Scott, 2000, pp. 87–88, 97–99)

There are other centrality measures, see Scott

In essence, this is page-rank

See also: eigenfactor.org for ranking scientific journals

ヘロト ヘアト ヘビト ヘビト

Simple versus Complex Networks

Rough notion of "complex": many *strongly interdependent* parts Networks clearly have many parts...

Simple networks by way of contrast to complex ones

- Completely regular, deterministic lattices (grids, etc.)
- ② Completely random graphs (Erdős-Rényi model)

ヘロト ヘ回ト ヘヨト ヘヨト

Erdős-Rényi Model

Erdős: "A mathematician is a machine for turning amphetamines into proofs" often bowlderized into "coffee" Actually also done by Solomonoff/Rapoport, possibly others... Not realistic but (1) cute math and (2) gives a kind of baseline Model specification:

- *n* nodes (fixed)
- Each possible edge exists with probability *p*, independent of all other edges

イロト イポト イヨト イヨト

Degree of node $i = K_i$

 $K_i \sim \operatorname{Binom}(n-1,p)$

Why n - 1? Take limit $N \to \infty$, $p \to 0$, $np = \lambda = constant$

 $K_i \rightsquigarrow \operatorname{Pois}(\lambda)$

If $\lambda > \lambda_c$, one connected component has size $\propto n$ ("giant component"), small world property in giant component THOUGHT EXERCISE: Try to guess λ_c

イロト イポト イヨト イヨト 一座

Limitations

Degree distribution Rarely binomial/Poisson; often highly skewed; sometimes, arguably, power-law tailed

- Reciprocity In directed networks, $A_{ij} = A_{ji}$ more often than you'd expect from chance
- Transitivity If $A_{ij} = 1$ and $A_{jk} = 1$, higher odds that $A_{ik} = 1$ clustering coefficients measure this transitivity (counting triangles)

Homophily/Assortativeness $A_{ij} = 1$ is more likely if *i* and *j* are similar — or, in some networks, dis-similar Social networks tend to be assortative by degree, technological networks tend to be *dis*-assortative (Newman and Park, 2003)

<ロト (四) (日) (日) (日) (日) (日) (日)

Can make some of these limitations go away in **inhomogeneous** Erdős-Rényi models, with different *p* between different *types* of nodes (Clauset *et al.*, 2007) Will see other models of networks, with more complexity, next time

ヘロト ヘ回ト ヘヨト ヘヨト

Alberich, R., J. Miro-Julia and F. Rossello (2002). "Marvel Universe looks almost like a real social network." E-print, arxiv.org, cond-mat/0202174. URL http://arxiv.org/abs/cond-mat/0202174.

Clauset, Aaron, Cristopher Moore and Mark E. J. Newman (2007). "Structural Inference of Hierarchies in Networks." In *Statistical Network Analysis: Models, Issues, and New Directions* (Edo Airoldi and David M. Blei and Stephen E. Fienberg and Anna Goldenberg and Eric P. Xing and Alice X. Zheng, eds.), vol. 4503 of *Lecture Notes in Computer Science*, pp. 1–13. New York: Springer-Verlag. URL http://arxiv.org/abs/physics/0610051.

Davis, Allison, Burleigh B. Gardner and Mary R. Gardner (1941). *Deep South*. Chicago: University of Chicago Press.
Freeman, Linton C. (2003). "Finding Social Groups: A Meta-Analysis of the Southern Women Data." In *Dynamic* =

Social Network Modeling and Analysis (Ronald Breiger and Kathleen Carley and Philippa Pattison, eds.), pp. 39–77. Washington, D.C.: National Academies Press. URL http://www.nap.edu/openbook.php?record_id= 10735&page=39.

Freeman, Linton C. and Douglas R. White (1993). "Using Galois Lattices to Represent Network Data." *Sociological Methodology*, **23**: 127–146. URL http:

//eclectic.ss.uci.edu/~drwhite/pw/Galois.pdf.

Kleinfeld, Judith (2002). "Could It Be a Big World After All? What the Milgram Papers in the Yale Archive Reveal About the Original Small World Study." *Society*, **39**: 61–66. URL http://www.uaf.edu/northern/big_world.html.

Newman, M. E. J. and Juyong Park (2003). "Why social networks are different from other types of networks" *Physical* Social

Review E, 68. URL

http://arxiv.org/abs/cond-mat/0305612/.

- Newman, Mark E. J. (2003). "The Structure and Function of Complex Networks." *SIAM Review*, **45**: 167–256. URL http://arxiv.org/abs/cond-mat/0303516.
- Potterat, J. J., L. Phillips-Plummer, S. Q. Muth, R. B. Rothenberg, D. E. Woodhouse, T. S. Maldonado-Long, H. P. Zimmerman and J. B. Muth (2002). "Risk network structure in the early epidemic phase of HIV transmission in Colorado Springs." *Sexually Transmitted Infections*, **78**: 159–163. URL http://sti.bmj.com/cgi/content/abstract/78/ suppl_1/i159.
- Roth, Camille and Paul Bourgine (2003). "Binding Social and Cultural Networks: A Modelization." Electronic pre-print. URL http://arxiv.org/abs/nlin.A0/0309035.

(2005). "Epistemic communities: description and hierarchic categorization." *Mathematical Population Studies*, **12**: 107–130. URL

http://arxiv.org/abs/nlin.A0/0409013.

Scott, John (2000). *Social Network Analysis: A Handbook.* Thousand Oaks, California: Sage Publications, 2nd edn.

- Wasserman, Stanley and Katherine Faust (1994). *Social Network Analysis: Methods and Applications*. Cambridge, England: Cambridge University Press.
- Watts, Duncan J. (2004). "The "New" Science of Networks." Annual Review of Sociology, **30**: 243–270. doi:10.1146/annurev.soc.30.020404.104342.

White, Douglas R. and Vincent Duquenne (1996). "Special Issue on "Social Network and Discrete Structure Analysis"." *Social Networks*, **18**: 169–318.

イロト イポト イヨト イヨト 三日