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Erdős-Rényi Again
Inhomogeneous E-R Models

Watts-Strogatz Graphs
Exponential Family Random Graphs

Generative Models
Preferential Attachment

References

Models of Networks, with Origin Myths
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Erdős-Rényi Again

n nodes, edges are IID binary variables with probability p
Degree of node i = Ki

Ki ∼ Binom(n − 1, p) Pois(np)

Problems

Degree distribution Not Poisson
Reciprocity Pr

(
Aji = 1|Aij = 1

)
> p

Transitivity Pr
(
Aik = 1|Aij = Ajk = 1

)
> p

Homophily/Assortativeness Pr
(

Aij = 1|typei = typej

)
> p

36-462 Lecture 21
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Inhomogeneous E-R Models

Give each node a type, 1, . . . k , Ti
mixing matrix Pab = probability of link from type a to type b
Edges are still independent given type
Edges are not independent ignoring type
Example: k = 2, types uniform and independent

P =

[
0.9 0.1
0.1 0.9

]
Obviously gives homophily

p = Pr
(
Aij = 1

)
= 0.9Pr

(
Ti = Tj = 1

)
+ 0.1Pr

(
Ti = 1, Tj = 2

)
+0.1Pr

(
Ti = 2, Tj = 1

)
+ 0.9Pr

(
Ti = Tj = 2

)
= 0.9× 0.25 + 0.1× 0.25 + 0.1× 0.25 + 0.9× 0.25 = 0.5
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Also gives reciprocity:

Pr
(
Aji=1 = 1, Aij = 1

)
= 0.81Pr

(
Ti = Tj = 1

)
+ 0.01Pr

(
Ti = 1, Tj = 2

)
+0.01Pr

(
Ti = 2, Tj = 1

)
+ 0.81Pr

(
Ti = Tj = 2

)
= 0.41

Pr
(
Aji=1 = 1|Aij = 1

)
=

Pr
(
Aji = 1, Aij = 1

)
Pr

(
Aij = 1

)
= 0.82 > 0.5

EXERCISE: Show that this model has transitivity of edges as
well
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One direction for extending this: block models (“block” = type),
indicating “type A gets links from type B, gives links to type C,
never gets links from D or E. . . ”
Community structure or modularity is a limiting case of this,
where mixing matrix has big diagonal entries, small off-diagonal
ones
References: Reichardt and White (2007) for discovering block models;
Clauset et al. (2007) for discovering hierarchies of modules;
http://bactra.org/notebooks/community-discovery.html for
references on community structure and community discovery
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Watts-Strogatz “Small World” Graphs

Watts and Strogatz (1998)
Regular lattices have a lot of reciprocity and
transitivity/clustering
but are “large worlds”, in d dimensions diameter
= O(n1/d) � O(log n)
Somehow interpolate between lattices and E-R graphs to get all
three properties
but work with undirected graphs for simplicity
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Solution: start with regular lattice, add “long-range shortcuts” at
random
First approach: For each edge, with probability ρ, re-wire one
edge to a uniformly random new node (avoiding self-loops)
As ρ → 0, go to regular lattice
As ρ → 1, go to E-R graph with same density as lattice
can create disconnected graphs
Second approach: add random edges without removing old
ones
easier to manipulate, doesn’t quite go to E-R as ρ→ 1
Will do more with this in the EXERCISES
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Exponential Family Random Graphs

Measure graph properties like density, reciprocity, transitivity;
specify graph probabilities in terms of them
Exponential families are the easiest way to do this

Pr (X = x) =
h(x) exp

{∑d
i=1 θiTi(x)

}
∫

dx h(x) exp
{∑d

i=1 θiTi(x)
}

=
h(x) exp

{∑d
i=1 θiTi(x)

}
Z (θ)

Ti are sufficient statistics, θi are natural parameters
Acronym: ERGM, Exponential family Random Graph Model (“err-gim” or
“err-gum”)
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E-R model is an exponential family:

Pr (A = a) =
n∏

i=1

∏
j 6=i

paij (1− p)(1−aij )

= p
P

ij aij (1− p)n(n−1)−
P

ij aij

= (1− p)n(n−1)

(
p

1− p

)P
ij aij

= (1− p)n(n−1) exp

(log p/(1− p))
∑

ij

aij


so T =

∑
ij aij , θ = log p/(1− p), Z (θ) = (1− p)−n(n−1)
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Exponential family models are easy to fit by maximum
likelihood, if you can find Z (θ) or Eθ [Ti(x)]

∂ log Pr (X = x)

∂θi

=
∂

∂θi
log h(x) +

∂

∂θi

d∑
j=1

θjTj(x)− ∂

∂θi
log Z (θ)

= 0 + Ti(x)− 1
Z (θ)

∂Z (θ)

∂θi

= Ti(x)− Eθ [Ti(X )]
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For E-R model, Eθ

[∑
ij Aij

]
= n(n − 1)p

so

p̂MLE =

∑
ij aij

n(n − 1)

What about more complicated ERGMs?
“p1 model”: sufficient statistics are total number of edges, and
total number of reciprocal edges
Not so easy to solve but can be done (Wasserman and Faust,
1994; Hunter et al., 2008)
p∗: general ERGM, can add more features, homophily as such
vs. reciprocity or transitivity as such...
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Example of ERGMs Working

High school friendship network (Goodreau et al., 2005)

Fit model including homophily by sex, grade, race; also different
over all probability of forming edges (“main effect”)
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Best R package: statnet (on CRAN)
Generally not possible to solve
Use simulation to approximate Z (θ) and/or Eθ [T (X )] (Hunter
and Handcock, 2006)
even then there can be pathologies from bad choice of model
(e.g. model say probability of these network statistics is 10−50)
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Some Important Weaknesses of ERGMs

1 Possible pathologies in fitting
2 “Statistics convenient for us to measure” 6= “important

causal variables”
3 Matching some statistics doesn’t mean matching others

(Hunter et al., 2008)
4 No origin myth/generative model (typically)
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Some Generative Models

E-R model edges appear and disappear independently over
time (works whether or not homogeneous)

p1 model Markov chain, edge in one direction makes adding
edge more likely, losing one edge makes other
tend to go away

Watts-Strogatz Models See Clauset and Moore (2003) for a
semi-plausible story about adaptive re-wiring

E-R again Add nodes one by one, each node adds links to
existing nodes independently with probability p

Preferential attachment Graphical version of Yule-Simon
process
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Preferential Attachment

Made famous by Barabási and Albert (1999); Albert and
Barabási (2002)
At each time-step a new node arrives
With probability ρ, new node i makes edge to old node j ,
picking j ∝ kj , degree of j
With probability 1− ρ, i links to a completely random node
This is exactly the Yule-Simon process that produces power law
tails (Bornholdt and Ebel, 2001)
Apparently first applied to networks by Price (1965)
Will see more in the EXERCISES
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