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Inference for Network Models

Matched Random Networks
Hierarchical Random Graphs
Discriminating Network Growth Modes

General reading: Hunter et al. (2008)
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Matched Random Networks

“So, you think you’ve found an interesting network structure, do
you? Well isn’t that special!”
Some kinds of network structure follow automatically from
others
e.g., assortative⇒ reciprocal, cluster
Is what you are seeing an artifact or does it mean something?
Question of what does a random network look like?
But not just any random network, one that is close to yours
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Basic Algorithm

Observe interesting feature X in your data graph g
Construct a distribution µ over random graphs G that matches
g, but doesn’t build in X
Draw many samples G1, G2, . . . Gm from µ
See how many of them have feature X
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Simple Matched Random Networks

Erdős-Rényi networks are random. . .
Matching: same number of nodes and same density of edges
= expected degree
Very random. . . in fact, too random
In almost any situation, you know that your network doesn’t
look like that
It would be nice to match some more features than just the size
and the density!
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Exponential Random Graphs as Matched Random
Networks

Pick your functionals on the network = sufficient statistics = Ti ,
i ∈ 1 : d , observe values ti = Ti(g)
Then (as discussed) θ̂MLE solves

EbθMLE
[T ] = t

BUT µ = PrbθMLE
(G) also solves

max Hµ[G] s.t. Eµ [T ] = t

with H = Shannon entropy (Mandelbrot, 1962).

Maximizing likelihood in the exponential family maximizes
entropy over all distributions
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Why Should You Care about Maximum Shannon Entropy?

Some people see this as a self-justifying ideal
this is hard to take seriously
Gives distribution closest to independence under the constraint
(Amari, 2001)
but observed ≈ expected isn’t a universal rule of inference!
unless observation is a big average!
Background problem: picking the right statistics to match
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Fixing the Degree Distribution

Newman et al. (2001)
Fix N
Generate N random numbers Ki from the empirical degree
distribution — “stubs”
Choose pairs of free stubs uniformly at random; join them
Equally likely to produce any graph with that degree distribution
Must have even sum-of-degrees but this is not a big issue (if
not even, discard and re-simulate)
Modifications required for directed graphs and bipartite graphs
to handle summing-up constraints
if sums don’t match, pick one pair, discard their sizes, re-draw; repeat as
needed
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Example: Corporate Boards

Public corporations have directors who represent shareholders
and (supposedly) pick the executives
Board members often sit on many boards
This effectively a coordinating mechanism

People of the same trade seldom meet together, even for
merriment and diversion, but the conversation ends in a
conspiracy against the public, or in some contrivance to raise
prices.

Also something that doesn’t lead to very good decisions, but
does shield rich people from market forces (Khurana, 2002)
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Hierarchical Structure

Clauset et al. (2007)
code: http://www.santafe.edu/~aaronc/randomgraphs/
Go back to the inhomogeneous Erdős-Rényi model
Completely arbitrary mixing matrix suffers a common problem
of unconstrained maximum likelihood: over-fit by assigning
probability 1 to data
here, 1 type per node
One constraint: hierarchy
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Graph, hierarchy on nodes
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Linking probability on tree for hierarchy
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Probability of within-group linkage for group/type i = θi
number of edges within group i , but not any of its sub-groups
= Ti
number of nodes in left sub-tree, right sub-tree = Li , Ri
Number of possible edges for group i is LiRi
so log-likelihood is

L(θ) =
∑

i

Ti log θi + (LiRi − Ti) log (1− θi)
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Maximizing L assumes you know the tree! This is what we
want to learn. . .
Could try all ≈

√
2(2N)N−1e−N possible trees. . .

Parameter-counting penalties (like BIC) unhelpful since always
N − 1 parameters
What to do?
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Model sampling and model averaging

Pick an initial tree τ however you like; maximized log-likelihood
= Lτ

Randomly perturb it to make a new tree δ, log-likelihood = Lδ

Accept δ if Lδ ≥ Lτ

Otherwise, accept with probability equal to eLδ−Lτ

Gives a sample of trees where Pr (τ) ∝ eLτ

Can average over trees, do weighted average (by likelihood),
use common features of many trees. . .

36-462 Lecture 25



Matched Random Networks
Hierarchical Structure

Discriminating Network Growth Modes
References

Randomly perturbing trees

Pick random internal node in tree; has out-group and two
in-groups; swap at random

a b c a b c a c b

this goes from any tree on N nodes to any other tree on N
nodes
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Discriminating Network Growth Modes

Middendorf et al. (2005)
Given: different models for how a network grew
Wanted: guess as to which one it was
Simulate many networks from each model
Train a classifier to reliably discriminate between them
Need features (sub-graph census) and classifiers (decision
trees)
Validate the classifier by showing it has low error rates
Classifier may or may not look at features important in any one
model
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