Statistics 36-462 Chaos, Complexity, and Inference

Prof. Cosma Shalizi

Spring 2009

Prerequisites

course in mathematical statistics E.g., 36-310, 36-401, or 36-625/626

and course in probability, *including random processes* E.g. 36-217, 36-225/226, 36-410, or 36-625/626

or consent of instructor

The last page of this handout lists the concepts you should be familiar with. Some programming experience will be *extremely* helpful.

Textbooks and Readings

Three books are **required**: Flake's *The Computational Beauty of Nature*; Miller and Page's *Complex Adaptive Systems*; Smith's *Chaos: A Very Short Introduction*. Four books are **optional but recommended**: Guttorp's *Stochastic Modeling of Scientific Data*; Krugman's *The Self-Organizing Economy*; Fraser's *Hidden Markov Models and Dynamical Systems*; and Braun and Murdoch's *A First Course in Statistical Programming with* R. Various papers are also going to be **required**. The detailed reading schedule, including links to download the papers, is online at

http://www.stat.cmu.edu/~cshalizi/462/syllabus.html

Check it often, since it will almost certainly be updated as we go along.

Logistics

Class Tuesdays and Thursdays 12:00 to 1:20 in 208 Scaife Hall

Office Hours Wednesdays 10:00 to 11:00 and Thursdays 4:00 to 5:00 in 229C Baker Hall, or by appointment

Homeworks due Fridays at 5 pm by e-mail

Contact

Office 229C Baker Hall

Phone 412-268-7826

E-Mail cshalizi [at] cmu.edu This is by far the best way to contact me.

Grading

- **Problem sets** There will be one problem set every week (approximately). Problems will be mostly simulations and calculations, with only a few proofs. Submit your homework electronically as PDFs (no Word files). For computational questions, do *not* submit raw sessions or code, but describe methods and results in English; include code, when appropriate, as a separate attachment (so I can run it). This will be 1/3 of your grade.
- **Writing** In addition to the problems, you will write one page per week (at least) on that week's readings, to be e-mailed at the same time as the homework. (You can include it in the same PDF if you like.) This will be 1/6 of your grade. (Do the readings!)

Class participation will be 1/6 of your grade. (Come to class!)

Final exam There will be a take-home final, which will consist of about halfdozen long problems requiring you to set up models and/or evaluate existing models using the techniques taught in class. You will be expected to do *one* of the problems. The exam will be made available on 28 April, and your write-ups will be due (by e-mail) at 5 pm on 9 May. This will be 1/3 of grade of your grade.

Things You Should Already Know

If more than a handful of these concepts are unfamiliar to you — not just rusty, "I used to know that" things, but new or "I never got that at all" things — then see me at once.

From Probability : event, random variable, indicator variable; probability mass function, probability density function, cumulative distribution function; joint and marginal distributions; transformation of distributions; conditional probability; independence, conditional independence; independent and identically distributed (IID); expectation, variance; Markov and Chebyshev inequalities; binomial, multinomial, geometric and Poisson distributions; Bernoulli sequences; exponential and Gaussian distributions; law of large numbers; central limit theorem; random or stochastic process; stationary and non-stationary processes; random walk; Markov chain, state, transition matrix; transient and recurrent state; invariant or stationary distribution.

From Statistics : sampling from a population; sample mean, variance, standard deviation, median; covariance and correlation; histogram; likelihood, maximum likelihood estimation; point estimates, accuracy, precision, bias, standard errors, consistency, efficiency; confidence intervals; hypothesis testing, error rates; contingency table, chi-squared (χ^2) test; goodness-of-fit, *p*-value; mean-squared error, bias-variance decomposition; linear regression, coefficients, residuals; time series.