
Take-Home Final Exam

36-462, Spring 2009

Due 12 noon, 12 May 2009

Choose 1 of the following problems. Present as complete a solution as you
can to all parts. Submit your answers electronically as PDFs, along with your
code in machine-readable form. (R is preferred but if you would rather use
something else, ask me.)

You are free to read whatever you like in connection with this.
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1. Fluctuating Feedback A linear feedback system has a one-dimensional
state variable X. There is a resting or set-point value of X, which without
loss of generality we can take to be zero. When the state is perturbed away
from zero, some fraction at of the perturbation is fed back into the state
at the next time-point:

Xt+1 = atXt + Ut

where Ut is the new input to the system. (This is also called a first-order
autoregressive or AR(1) model.) In a linear, time-invariant system, the
feedback ratio is constant, at = a ∀t. This problem is about what happens
when at fluctuates.

(a) Suppose that at = a and Ut = u for all t, where |a| < 1, while X0 = 0.
Show that Xt → u 1

1−a at t → ∞. The ratio 1/(1 − a) is called the
gain of the feedback loop.

(b) Suppose Ut has an IID Gaussian distribution with mean 0 and vari-
ance σ2. Show that there is a ν2 such that if Xt has a N (0, ν2)
distribution, then so does Xt+1, and find ν2 in terms of a and σ2.
(This is the invariant distribution of the Markov process.)

(c) Suppose that the feedback ratio is a continuous random variable,
A, with density f . Find a formula for the density of the gain G =
1/(1 − A). Show that it has a power-law right tail, i.e., that the
density approach g−α as g →∞, and find α. Does it depend on the
original density f?

(d) Simulate 104 random draws from A ∼ N (0.6, 0.01), and plot the
corresponding empirical survival function of G. Does it agree with
your answer in the previous part?

(e) Generate a series Ut of length 104, where each Ut is an IID draw from
a N (0, 1) distribution. Set X0 = 0 and find X104 for each value of
A you generated in the previous part. Describe the distribution of
X104 , particularly the tails. Compare it to the distribution of which
you would expect from part (2) under the average gain.

(f) In the previous part, the feedback factor was set randomly at the
beginning of each time series, but stayed fixed thereafter. Suppose
that it follows its own AR(1) model,

At+1 = c + bAt + Vt

where Vt is IID Gaussian noise with mean zero and variance µ2,
independent of Ut. If b = 0.9999, find the values of c and µ2 which
will give A an invariant N (0.6, 0.01) distribution.

(g) Write a function to simulate the time-evolution of At under these
rules. It should take an initial value A0, values of b, c and µ2, and
a time-length T , and return the sequence A1, A2, . . . AT . Verify that
your code works by checking the distribution of A9001 through A10000
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with A0 = 0.6, T = 104 and the other parameters as in the previous
part.

(h) Write a function which will simulate the time-evolution of Xt given
an initial value X0, a sequence of At values, σ2, and a time-length
T , again returning X1, X2, . . . XT . Verify that it works by checking
the long-run distribution of Xt when At = 0.6 for all t, σ2 = 1 and
X0 = 0.

(i) Combine the functions from the previous two parts to give a single
function which takes as inputs X0, A0, b, c, σ2 and µ2, and returns
both the A and X sequences. Using the same parameter values as
in those parts, and 104 simulation runs of length T = 104, find the
long-run distribution of XT .
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2. Imitation with Memory Recall from the lectures on heavy-tailed dis-
tributions that in basic Yule-Simon model works as follows. Objects are
divided into piles. At each round t, we add one object. With probability
ρ the object is added to a new pile. With probability 1 − ρ, the object
is added to an existing pile; the probability of being added to a pile of
size k is proportional to k. The Yule-Simon distribution is the limiting
distribution of pile sizes, p(k) = αB(k, α + 1) where α = 1/(1− ρ) and B
is the beta function (beta in R); The CDF is F (k) = 1 − kB(k, α + 1).
This has power-law tails, since p(k) = O(k−α+1) for large k.

(a) Write a function to simulate one step of the Yule-Simon process. It
should take as its input ρ and a vector of pile sizes, and return a new
vector of pile sizes. Check that the sum of all pile sizes only increases
by 1, and that when an existing pile is added to, the probability of
adding to piles of size k is in fact proportional to k.

(b) Write a function to generate a random value from simulating the
Yule-Simon process, starting with a single pile of size 1 and continuing
to a large, specified size. Check that the distribution of these random
values is close to that of the Yule-Simon distribution as given above.
(Do this for at least two values of ρ.)

(c) Modify your simulation so it keeps track of how long it has been
since each pile was added to. (One way to do this is to modify the
function from the first part so it takes two vectors, one of sizes and
one of times; when a pile is added to or created, its time is set to 1,
otherwise all times increase by 1.) At the end of a long simulation
run, what is the correlation between the size rank of piles and how
recently they were modified? (Hint: use rank!) Does it depend on
ρ?

(d) Modify the simulation so that it takes an extra parameter, m: only
piles which have been added to in the last m time-steps can be added
to this time-step. (If all existing piles are too old, pick one at ran-
dom.) Include a special value of m (i.e., not a positive integer!) which
turns off this memory restriction; you’ll know it’s working because it
will give the same behavior as the previous model.

(e) Simulate the model for 104 time-steps with ρ = 0.01 and m =
1, 2, 10, 100 and ∞. Using the methods discussed in class, which
of the resulting distributions could plausibly be power laws?
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3. Janet This problem is about re-implementing the Janet algorithm in
Foulkes’s 1959 paper. For simplicity, we’ll stick to a binary, {0, 1} alpha-
bet.

(a) Read the paper. (It’s on the course website.)

(b) Write a function to count the number of times a given binary word
w appears in a binary sequence x. The function should take w and
x as inputs and return the count. Include overlapping instance of w
(so if w = 00 and x = 000, the count is 2). Hint: look at the old
homework.

(c) Write a function to simulate the 7-state process in the paper. This
should take as its input a number of output symbols T , and return a
vector of 0s and 1s generated by the machine. Check that the simu-
lator is working properly by comparing the probability of producing
a 1 in each state to the actual frequencies of 1s in the simulation
output when T is large.

(d) Write a function to test for whether states need to be split. It should
take as inputs w, the word defining the state; x, the complete data
sequence; and α1, a significance level in (0, 1). Use a χ2 test to
check whether the distribution of the next symbol conditional on
0w is significantly different from the distribution conditional on w.
Explain why you do not also have to test the distribution conditional
on 1w.

(e) Write a function testing for whether two states need to be amalga-
mated, with significance level α2.

(f) Write a function to implement Foulkes’s algorithm. It should take
as input the data sequence x and a significance level α, and return a
list which gives the words defining the states and the probability of
producing a 1 in each state.

(g) Apply your algorithm to data from

i. A Bernoulli process with p = 0.5
ii. A Bernoulli process with p = 0.1
iii. The first-order Markov chain from homework 3
iv. Foulkes’s example process

In each case, use α1 = 0.10 and α2 = 0.05, and report how large T
has to be before the algorithm recovers the correct set of states.
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4. El Farol Once upon a time in Santa Fe, there were N = 50 people, who
only had two things to do at night: stay at home and look at the stars, or
go to the El Farol bar.1 Staying home had a relative pay-off of 5. Going
to El Farol was more fun that star-gazing (pay-off 10), unless more than
N/2 = 25 people tried to go; then the bar go too crowded, the waiters
forgot about drink orders, fights broke out, etc., and the over-all pay-off
was 0. Everyone then would rather go to El Farol than stay home, unless
more than 24 others are also going; then everyone would rather stay home.

(a) An outcome is Pareto optimal when it cannot be changed without
making at least one agent worse off2. Show that any given night’s
configuration of activities (bar-going/star-watching) is Pareto opti-
mal if and only if exactly 25 people are at the bar.

(b) One measure of the efficiency of the social system is how far the
number of attendees departs from 25. Write a function which calcu-
lates the mean squared distance from 25 of a time-series of numbers,
E

[
(X − 25)2

]
.

(c) A mindless randomized strategy is for every agent to flip a coin every
night with probability p = 0.5 and go if the coin comes up heads.
Calculate the inefficiency of this rule analytically. (Hint: express
this in terms of the mean and variance of the appropriate binomial.)

(d) Write a simulation of the mindless random strategy where each agent
makes independent decisions. The simulation should take as input a
number of time-steps T , and return the number of attendees at El
Farol each night, X1, X2, . . . XT . Verify that the algorithm is working
properly by checking the time-average of X and the inefficiency.

(e) Write a simulation where agents learn by reinforcement, as follows.
At time t, agent i has weight wi(0, t) for staying home and weight
wi(1, t) for going to the bar. The agent’s move is Yi(t), which is 1
with probability pi(t) = wi(1, t)/(wi(0, t)+wi(1, t)). When all agents
have made their decisions, they receive the appropriate pay-off fi(t).
Then agents update their weights:

wi(j, t + 1) = αwi(j, t) + (1− α)fi(t)1Yi(t)=j

where α ∈ [0, 1], i.e., they increment the weight of the move they
made by a fraction of the pay-off they received, and otherwise shrink
all weights towards zero. Initially, all agents give equal weights to
the two moves, wi(0, 0) = wi(1, 0) = J .
Your function should take as inputs the number of rounds T , the
memory decay rate α, and the initial weights J . It should return

1This is a slight simplification of the original El Farol game due to Brian Arthur. El Farol
is a real bar and restaurant in Santa Fe, and a very good one, though there are others. —
More seriously, there are many social activities, like timing the stock market, where, all else
being equal, it’s better to be in the minority.

2This is the same Pareto as in power laws.
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the sequence of the number of attendees, X1, X2, . . . XT , and the
final relative probabilities of going to the bar for each agent (i.e.

wi(1,T+1)
wi(0,T+1)+wi(1,T+1) for i = 1, 2, . . . N).
Some steps towards making this work:

i. Write a function which takes an N × 2 matrix of weights and
returns the vector of length N which is the probability of picking
action 1 for each agent. Check that it works by giving it the

weight matrix

 5 10
20 20
30 15cc

.

ii. Write a function which takes a vector of N probabilities and re-
turns N independent random choices. (Hint: see help(rbinom).)

iii. Write a function that takes a vector of N actions and returns the
N corresponding pay-offs. Check that it gives the right pay-offs
for all combinations of actions by 3 players.

iv. Write a function that updates the weights. It should take the old
weight matrix, the vector of actions, the vector of pay-offs, and
the decay-rate α, and return a new matrix of weights. Check
that it correctly updates the weight matrix given earlier when
α = 0.5.

Putting these parts together in a loop should give the full simulation.
(However, if you want to organize it differently, you can do so; just
check that choices are being made and weights updated appropri-
ately.)
As an over-all check, note that if α = 0, there is no learning, and the
behavior should be the same as the random-choice model.
When you think the model is working, run it for T = 200 time-
steps and initial weights J = 5 with at least 4 different values of α.
Report the time-course of average attendance, the inefficiency, and
the variance of the final probabilities of attending as functions of α.
Can you get more efficiency than in the IID scenario by adjusting α?
What’s the relationship (if any) between inefficiency and the variance
in the probabilities?

(f) Modify your simulation so that agents update the weights of both
actions with that time-step’s pay-offs (i.e., they don’t just update
the weight of the action they made). What happens?

(g) Modify your simulation so that the new weights are just the sum of
the old weights plus the payoffs, but the probability of taking action
j is proportional to ewi(j,t) rather than wi(j, t). What happens?
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5. Networks from Games In this model, there are N agents, who decide
whom to interact with in each time step. (This is not necessarily symmet-
ric.) Agent i has weights wij for all other agents, and interacts with agent
j with probability proportional to wij . Initially, wij = 1 for all i and j,
except on the diagonal, wii = 0.

(a) Write a function to take as input a weight matrix and return as
output the matrix of interaction probabilities. Check it by hand on
an example with N = 3.

(b) Write a function to take as input the matrix of interaction probabil-
ities and return the actions of each agent.

(c) Write a function to update a weight matrix by adding each agent’s
current pay-offs to their weight for the agent they interacted with.

(d) Write a simulation where each agent always receives a pay-off of 1 no
matter what. What happens to the probability matrix for N = 50
and large T , say 103? (Find a way of displaying the weight matrix;
you might consider heatmap, or making it into a network graph using
the statnet package.)

(e) Write a simulation where if i interacts with j, wij and wji are both
increased by 1. how do the resulting probability matrices differ from
those with asymmetric pay-offs?

(f) Each agent now has one of two types, R and S. If their types match
when they interact, they both get pay-off 1, otherwise they get pay-off
0. What happens to the interaction probabilities?

(g) Change the pay-offs so that if two Ss interact, the both get pay-off
1; if two Rs interact, they get pay-off 0.75; and if an R and an S
interact, the R gets 0.75 and the S gets 0. (That is S pays off better
if you have a cooperative partner, but worse if you don’t.) What
happens to the interaction probabilities if half the agents are of each
type?

(h) Introduce imitation into the model: each time step, with probability
q, each agent will switch to the type with the highest average pay-off
from the last time step. What happens to the interaction probabili-
ties and the distribution of types with q = 0.1? With q = 0.01? (You
will need to do multiple runs to answer these questions.)
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