
Solutions to Homework 3

36-462

Spring 2009

1. (a) First, we need to generate a time series from the logistic map; we
already have code to do this. Second, we need to check in which cell
of the generating partition the series is at each time. Then we need
to return that sequence of cells.
The first part uses some code for the logistic map (taken from 03.R,
plus the discretization function. (Fully-commented code is online in
the accompanying file.)

logistic.genpart <- function(x) {
ifelse(x<0.5,’L’,’R’)

}

logistic.symbseq <- function(timelength,r) {
x <- logistic.map.ts(timelength,r)
s <- logistic.genpart(x)
return(s)

}

1

(b) Start from the end and work backwards. We want to run a test for
independence of two random variables, and the hint tells us that
the easiest test to use is χ2. To run such a test, we need a contin-
gency table. What needs to go into the table are counts of how many
times a given block of length L was followed by another block of
length L. That means we need to divide a time series into those
non-overlapping blocks, and then tabulate them. Finally, to do this
to a time series, we need to actually have the time series. That last
part was handled in part (a) of the problem.
So our solution should look something like this:

logistic.map.indep.test <- function(L,n=min(1e4,10*(2ˆ(2*L))),r=1) {
s <- logistic.symbseq(n,r)
successive.blocks <- symbseq.to.successive.blocks(s,L)
my.tab <- table(successive.blocks)
my.test <- chisq.test(my.tab)
return(list(p.value=my.test$p.value,test=my.test,count.table=my.tab))

}

where n is the length of the time series to simulate. (See below for
the complicated-looking default value.) Notice that the only thing
we actually have to write — the only thing which is currently vapor-
ware — is the symbseq.to.successive.blocks function; we
wrote logistic.symbseq in part (a), and table and chisq.test
are already part of R.
What we need to do is take a window of length L (not to be con-
fused with the symbol “L”!), slide it along the symbol sequence, and
record all the patterns we see. We also need to keep track of which
pattern followed that one, in the next L block. The common element
here is finding all the length L blocks, which we’ll push back a step
to another function. We’ll assume that this function gives us a vector
of blocks. (See online code for detailed comments.)

symbseq.to.successive.blocks <- function(s,L) {
n <- length(s)
all.blocks <- symbseq.to.blocks(s,L)
The "leaders" begin at positions 1, 2, ... n-2L+1 (because there
needs to be another, following block of length L after each of them)
max.index.leaders <- n-2*L+1
The "followers" begin at positions L+1, L+2, ... n-L+1 (because there
needs to be a "leader" block of length L before each of them)
min.index.followers <- L+1
max.index.followers <- n-L+1
leaders <- all.blocks[1:max.index.leaders]
followers <- all.blocks[min.index.followers:max.index.followers]
return(list(leaders=leaders,followers=followers))

}

2

Now we write the symbseq.to.blocks function.

symbseq.to.blocks <- function(s,L) {
n <- length(s)
We need to take blocks from the sequence and collapse them into
single strings; make this operation a local function
collapser <- function(i) {paste(s[i:(i+L-1)],collapse="")}
A length L block can’t start at any position whose index > n-L+1,
though it could start there.
max.index <- n -L+1
blocks <- sapply(1:max.index,collapser)
return(blocks)

}

At this point it’s a good idea to check that everything is working
right with a small example.

> ss <- c("L","R","L","R","L","R","L")
> symbseq.to.blocks(ss,2)
[1] "LR" "RL" "LR" "RL" "LR" "RL"
> symbseq.to.successive.blocks(ss,2)
$leaders
[1] "LR" "RL" "LR" "RL"

$followers
[1] "LR" "RL" "LR" "RL"

You can check by hand that the code works on this example, and on
this one:

> rr <- c("L","L","L","R","L","R","R")
> symbseq.to.blocks(rr,2)
[1] "LL" "LL" "LR" "RL" "LR" "RR"
> symbseq.to.successive.blocks(rr,2)
$leaders
[1] "LL" "LL" "LR" "RL"

$followers
[1] "LR" "RL" "LR" "RR"

Ideally at this point I’d check an L = 3 case, but I’m just the teacher
here.
Going back to logistic.map.indep.test, once we have the suc-
cessive blocks we need to get a contingency table from them, so they
need to work sensible with the table function. Unsurprisingly (be-
cause otherwise, would I have it here?), they do:

> table(symbseq.to.successive.blocks(ss,2))
followers

3

leaders LR RL
LR 2 0
RL 0 2

Finally, the output of table needs to work as input to chisq.test,
but it does:

> chisq.test(table(symbseq.to.successive.blocks(ss,2)))

Pearson’s Chi-squared test

data: table(symbseq.to.successive.blocks(ss, 2))
X-squared = 1, df = 1, p-value = 0.3173

Warning message:
In chisq.test(table(symbseq.to.successive.blocks(ss, 2))) :

Chi-squared approximation may be incorrect

chisq.test is giving us a warning here, because the χ2 approx-
imation to the distribution of the test statistic is only valid if there
are a fairly large number of counts for each cell in the table. The
usual rule of thumb is that the expected number of counts must be
at least 5; let’s say 10 to be safe. Each cell in the table corresponds to
a word of length 2L, and we expect (for IID coin-tossing) that each
such word is equally likely, so we want 10 = n/22L, or n = 10× 22L.
Of course this grows very rapidly with L, so our default will be to
cap it at say 104. This is only a default so it can be over-ridden.
Returning the full test results and the count table as well as the p-
value is not strictly necessary but doesn’t hurt.
How do we know if this is working? If the “leader” and “follower”
blocks are independent, then the p value of the test should be uni-
formly distributed on [0, 1], and their CDF should be a straight di-
agonal line. Let’s check that by re-running the test a bunch of times
and plotting the empirical CDF (Figure 1).

> plot(ecdf(replicate(1000,logistic.map.independence.test(2)$p.value)),
xlab="Nominal p-value",ylab="True p-value",main="Distribution of
p-values")

> abline(a=0,b=1,col="blue",lty=2)

(c) At r = 0.966, the symbolic dynamics are not a Bernoulli process by
any reasonable test:

> summary(replicate(1000,logistic.map.independence.test(2,3e3,0.966)$p.value))
Min. 1st Qu. Median Mean 3rd Qu. Max.

3.000e-281 4.478e-239 3.061e-230 2.796e-192 5.070e-221 2.269e-189

This is as close to the test saying “inconceivable” as you could hope.

4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distribution of p−values

Nominal p−value

T
ru

e
p−

va
lu

e

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

Figure 1: Distribution of p-values obtained from question 2b (black circles),
with theoretical uniform distribution (dashed blue line).

5

2. Recall that the topological entropy rate is defined as

h0 ≡ lim
L→∞

1
L

log WL (1)

where WL is the number of allowed words of length L.

(a) There are at least three ways to do this. The simplest one is to just
count the number of distinct observed words of length L, ŴL, and
estimate by division:

ĥdivision
0 ≡ 1

L
log ŴL (2)

for some large L, as our estimate of h0.
The second way is to notice that if the limit exists, then for large L
we must have

log WL ≈ C + h0L (3)

where C is some constant we don’t care about. So if we regress ŴL

on L, the slope will be an estimate of h0. Call this the regression
estimate.
The third way is to use the fact, mentioned in the on-line notes about
the topological entropy rate, that

h0 = lim
L→∞

log WL − log WL−1 (4)

(Notice that this also follows from the linear expression I gave above.)
So yet another estimate of h0 is to take

log ŴL − log ŴL−1 (5)

for some large L. Call this the difference estimate.
(There is also a fourth way, which is to fit a model, like a finite-state
machine, to the symbol dynamics and then calculate the topological
entropy rate of the model analytically. This is often the most reliable
approach, but involves first building a good model-fitter.)
All three estimates will ultimately converge on the same value, if
you feed them enough data. In principle, all of them work best
when the value of L is large. In practice, if L is too large relative
to n, we see only a very small sample of the allowed words, i.e., ŴL

becomes much smaller than WL, introducing systematic errors into
our estimate. At the very least, when ŴL > ŴL+1, we do not have
enough data to say what is happening with the longer words.
For the logistic map, we use a binary alphabet (symbols set), so there
are at most 2L words of each length. To give us some chance of
seeing each of them, we should use a symbol sequence which is at

6

least a few times longer than the number of words we might run
into, say 10× 2L.
Here’s how to do the division estimate.1

logistic.TER.division <- function(r,L,n=10*(2ˆL)) {
s <- logistic.symbseq(n,r)
blocks <- symbseq.to.blocks(s,L)
word.table <- table(blocks)
W.L <- dim(word.table) # Counts number of distinct allowed words
return(log(W.L)/L)

}

Notice the trick with using the table function to identify all the
distinct words. Let’s re-cycle that for the regression estimate.

logistic.TER.regression <- function(r,L,n=10*(2ˆL)) {
s <- logistic.symbseq(n,r)
W <- vector(mode="numeric",length=L)
for (i in (1:L)) {

blocks <- symbseq.to.blocks(s,i)
W[i] <- dim(table(blocks))

}
my.regression <- lm(logcounts ˜ lengths,

data.frame(logcounts=log(W),lengths=(1:L)))
return(as.vector(my.regression$coefficients[2]))

}

And here’s the difference estimate:

logistic.TER.difference <- function(r,L,n=10*(2ˆL)) {
s <- logistic.symbseq(n,r)
lastW <- dim(table(symbseq.to.blocks(s,L)))
nextotlastW <- dim(table(symbseq.to.blocks(s,L-1)))
return(log(lastW) - log(nextotlastW))

}

To double-check these, notice that when r = 1, we have IID coin-
tossing, and every sequence of length L is allowed, so WL = 2L.
This means that h0 should be log 2 = 0.6931472.

> logistic.TER.division(1,3)
[1] 0.6931472
> logistic.TER.regression(1,3)
[1] 0.6931472
> logistic.TER.difference(1,3)
[1] 0.6931472

1Wouldn’t it be better programming practice to write a separate function to estimate h0 from an
arbitrary symbol sequence, so that it could be used with other dynamical systems? Yes, but we’d
still need something which took r, not a symbol sequence, as its argument, in order to plot h0

versus r.

7

which checks out.
Finally, let’s plot these estimates as functions of r to see if we’re get-
ting something reasonable. We know that h0 should be zero when-
ever the logistic map goes to a limit cycle (see the online notes for
details). I use L = 6 simply for reasons of speed. The plot is Figure
2.

> r.values <- seq(from=0,to=1,length.out=200)
> difference.values <- sapply(r.values,logistic.TER.difference,L=6)
> plot(r.values,difference.values,type="l",xlab="r",ylab="Estimated h0",

main="topological entropy rate estimates")
> division.values <- sapply(r.values,logistic.TER.division,L=6)
> lines(r.values,division.values,lty=2)
> regression.values <- sapply(r.values,logistic.TER.regression,L=6)
> lines(r.values,regression.values,lty=3)

(b) The easiest way to get a value for the standard error here is simply
to re-run the estimator multiple times and take the standard devi-
ation. This only captures the error associated with the fluctuations
from one run of the simulation to another, rather than the systematic
errors which come from biases in the estimator, etc.

8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

topological entropy rate estimates

r

E
st

im
at

ed
 h

0

Figure 2: Three estimates of the topological entropy rate of the logistic map.
Solid line, difference estimate. Dashed line, division estimate. Dotted line, re-
gression estimate. The true value of h0 is 0 whenever the map goes to a limit
cycle, i.e., whenever r < 0.866 or so, suggesting that the division and regres-
sion estimates may have a larger upward bias than the difference estimate.

9

3. Basically all the parts needed for this were already assembled for solving
problem 1. We need to estimate the 2 × 2 transition matrix Pij , and the
maximum likelihood estimates are

P̂ij =
Nij∑1

j=0 Nij

(6)

where Nij counts the number of times the symbol i is followed by the
symbol j. We can get this from the symbseq.to.successive.blocks
function we wrote, followed by using table.

markov.mle.1 <- function(s) {
blocks <- symbseq.to.successive.blocks(s,1)
counts <- table(blocks)
prop.table converts a count table to proportions, either by rows
or by columns, depending on 2nd argument - see its help file
mle <- prop.table(counts,1)
log.like <- sum(counts[counts>0]*log(mle[mle>0]))
return(list(transition.matrix=mle,log.like=log.like))

}

We don’t need the log-likelihood here, but it doesn’t hurt to compute it.
Remember it’s

L =
∑
i,j

Nij log P̂ij (7)

Even though 0 log 0 = 0, R does not like taking log of 0, so the conditions
in the sum restrict us to the strictly-positive terms.

Here’s a quick check that this is working properly:

> ss <- rbinom(20,1,0.7)
> ss
[1] 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1

> table(symbseq.to.successive.blocks(ss,1))
followers

leaders 0 1
0 2 2
1 2 13

> markov.mle.1(ss)
$transition.matrix

followers
leaders 0 1

0 0.5000000 0.5000000
1 0.1333333 0.8666667

$log.like
[1] -8.662706

10

There are four positions where the sequence has “0”; two of them are
followed by “0” and two of them are followed by “1”. There are 15 po-
sitions where a “1” is followed by something. (There is also a last “1”, at
the end, and we don’t know what it transitions to.) Of these, two of them
are followed by “0”. So the counts are correct, and converting the counts
to probabilities gives us exactly what the function says. This isn’t right
— the data came from IID coin-tossing, with p = 0.7, so the right matrix
would be [

0.3 0.7
0.3 0.7

]
but it’s not crazy to not get this right with only 20 data points!

To see this program in a better light, let’s write a small function to simu-
late from a binary Markov chain.

rbinmarkov <- function(n, p01, p11, p1start=NULL) {
if (is.null(p1start)) {

P = matrix(c(1-p01,p01,1-p11,p11),nrow=2)
Find the invariant distribution as the leading normalized eignevector
first.eigenvec = eigen(P)$vectors[,1]
P.inv = first.eigenvec/sum(first.eigenvec)
p1start = P.inv[2]

}
s = vector(length=n)
s[1] = rbinom(1,1,p1start)
for (i in 2:n) {

s[i] = rbinom(1,1,ifelse(s[i-1]<1,p01,p11))
}
return(s)

}

Now let’s try our estimator on the output from this.

> rs <- rbinmarkov(1e4,0.3,0.7)
> markov.mle.1(rs)
$transition.matrix

followers
leaders 0 1

0 0.7086676 0.2913324
1 0.3046236 0.6953764

$log.like
[1] -6088.478

Since the true matrix is
[

0.7 0.3
0.3 0.7

]
, this seems to be working.

11

