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Course Intro

Course Goals

« Learn about developments in dynamics and systems theory

x Understand how they relate to fundamental questions in
stochastic modeling (what is randomness? when can we use
stochastic models?)

x Think about how to do statistical inference for dependent data
x Get some practice with building and using simulation models
* You have learned a lot about linear regression with
independent samples and Gaussian noise

x We are going to break all that
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Course Intro

Approach

+x Read, simulate, do a few calculations

x Very few theorems

« Much rigor necessarily skipped

x A lot of reading — this is deliberate

x Move from lectures to discussions as the course goes

stat.cmu.edu/~cshalizi/462/syllabus.html
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stat.cmu.edu/~cshalizi/462/syllabus.html

Course Intro

Grading
Homework problem set every week (or so), ~2-3 problems
1/3 of grade

Writing ~ 1 page about the week’s readings, every week
1/6 of grade

Class participation 1/6 of grade

Final exam take-home, about 2 weeks to do it, pick one
problem out of 4—6
1/3 of grade
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Course Intro

Topics

Dynamical Systems 13 January-5 February
Models, dynamics, chaos, information,
randomness
Self-organization 10-19 February
Self-organizing systems, cellular automata
Heavy-tailed Distributions 24 February—17 March
Examples, properties, origins, estimation, testing
Inference from Simulations 19-26 March
Severity; Monte Carlo; direct and indirect inference
Complex Networks, Agent-Based Models 30 March—28 April
Network structures & growth; collective
phenomena; inference; real-world example

Chaos, Complexity and Inference 30 April



Models and Simulations

Models and Simulations

Model is a way of representing dependencies in some part of
the world

Hope: tracing consequences in the model lets you predict
reality

E.g., a map: tracing a route predicts what you will see and how
you can get from Ato B

Regressions are models of input/output

Simulating is tracing through consequences step by step in a
particular case

Simulation is basic; analytical results are short-cuts to avoid
exhaustive simulation (which may not be possible)
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Models and Simulations

Dynamical Systems

We are particularly interested in dynamical models, which
represent changes over time

Components of a dynamical system

state space : fundamental variables which determine what will
happen

update rule : rule for how the state changes over time, may be
stochastic.
A.k.a. map or evolution equations or equations
of motion:

observables : variables we actually measure;
functions of state (+ possible noise)

initial condition: starting state
trajectory or orbit: sequence of states over time
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The Logistic Map as an Example

A work-horse example: the logistic map

state x, population of some animal, rescaled to some
maximum value (so x € [0, 1])

map Xep1 = 4rxi(1 — x) = f(x)
the x factor means that animals make more
animals
1 — x factor means that too many animals keep
there from being as many animals
r is control parameter in [0, 1] (following notation in
Flake)

observable : we get to observe x directly, without noise

horrible caricature — we will see much better population
models — but mathematically simple and it illustrates many
important points
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The Logistic Map as an Example

Set r = 0.25 and pick some random starting points
First some code — R doesn'’t like iteration but we need it here

logistic.map <- function(x,r) {
return (4 rxx+* (1-x))

}

logistic.map.ts <- function (timelength,r,initial.cond=NULL) {

x <-vector (mode="numeric", length=timelength)
if(is.null (initial.cond)) {

x[1] <-runif (1)
} else {

x[1] <-initial.cond
}
for (t in 2:timelength) {

x[t] = logistic.map(x[t-1],r)

}

return (x)

}
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The Logistic Map as an Example

plot.logistic.map.trajectories <- function(timelength,
num.traj,r) {
plot (l:timelength, logistic.map.ts(timelength,r),lty=2,
type="b",ylim=c(0,1),xlab="t",ylab="x(t)")

i =1
while (i < num.traj) {
i <— i+1

x <- logistic.map.ts(timelength, r)
lines(l:timelength, x, 1ty=2)
points (l:timelength, x)

plot.logistic.map.trajectories(30,10,0.25)
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The Logistic Map as an Example
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The Logistic Map as an Example

They are! They are going to a fixed point
Solve:

x = 4(0.25)x(1 —x)

X = x—x?

0 = x°

Not very interesting!
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The Logistic Map as an Example

Let’s change r let’s say 0.3.
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The Logistic Map as an Example

Still converging but to a different value

X = 1.2x—1.2x2
0 = 0.2x—1.2x2
0 = x—6x2

Solutions are obviously x = 0 and x = 1/6. Note all the
trajectories converging to 1/6 (marked in red).

Why do they like 1/6 more than 0?

Can you show that 0 is always a fixed point?
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The Logistic Map as an Example

Crank up r again, to 0.5; fixed points at x = 0 and x = 0.5
Again they like one fixed point but not the other
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The Logistic Map as an Example

Now r = 0.8; the fixed points are x =0and x = 11/16
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The Logistic Map as an Example

What the bleep? Let’s look at just one trajectory
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The Logistic Map as an Example

It's gone to a cycle or periodic orbit, of period two
This means that there are two solutions to x = f(f(x)) which
are not solutions of x = f(x)

x =3.2[3.2x(1 — x)][1 —3.2x(1 — x)]

Quartic equation, so four solutions — we know two of them
(x =0, x = 11/16) because they are fixed points; the other two
are the points of the periodic cycle
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The Logistic Map as an Example

Phase of the cycle depends on the initial condition
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The Logistic Map as an Example

Increasing r increases the amplitude of the oscillation
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The Logistic Map as an Example

You will work out more about the periodic orbits in the
homework!
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Properties of Chaos

Properties of Chaos
We will define “chaos” more strictly next time
For now look at some characteristics
@ Sensitive dependence on initial conditions
@ Statistical stability of multiple trajectories
@ Individual trajectories look representative samples
(ergodicity)
@ Short-term nonlinear predictability
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Properties of Chaos

Sensitive dependence on initial conditions

Deterministic: same initial point has the same future trajectory
Continuity: can get arbitrarily small differences in trajectory by
arbitrarily small differences in initial condition

BUT

Amplification of differences in initial conditions: if |x; — y1| =,
then |x; — y;| =~ ee* for some A > 0

Simplest SDIC: x,.1 = ax, fora > 1

More complicated behavior when SDIC isn’t combined with
run-away growth
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Properties of Chaos

fix x; = 0.90
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compare x; = 0.90 to y; = 0.91; tracking to about t = 4

X(t)
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Properties of Chaos
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Properties of Chaos

compare x; = 0.90 to y; = 0.90001; tracking to about t = 12
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Properties of Chaos

x; = 0.90 vs. y; = 0.9000001; tracking to about t = 20
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Properties of Chaos

extend both trajectories
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Properties of Chaos

This is true!
To check it we need to evolve many trajectories in parallel

logistic.map.evolution <- function(timesteps,r,x) {
t=0
while (t < timesteps) {
x <- logistic.map(x,r)
t <— t+1
}

return (x)
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Properties of Chaos

Now run 10% initial points, uniformly distributed

> x1=runif (10000)
> hist (logistic.map.evolution(999,1,x1), freg=FALSE, xlab="x",
ylab="probability",main="Histogram at t=1000",n=41)
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Properties of Chaos

Histogram at t=1
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Properties of Chaos

Histogram at t=2

probability

0.0 0.2 0.4 0.6 0.8 1.0

Points near 0.5 get mapped towards 1, and the map function
changes slowly there, but only points near 0 or 1 get mapped to
0, and the function changes rapidly in those places
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Properties of Chaos

Histogram at t=3

probability

0.0 0.2 0.4 0.6 0.8 1.0

Many points which had gotten near 1 get mapped to near 0, but
those near 1/2 are still mapped towards 1
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Properties of Chaos

Histogram at t=5
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The two modes are getting balanced
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Properties of Chaos

Histogram at t=10
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Properties of Chaos

Histogram at t=20
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Properties of Chaos

Histogram at t=100
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Properties of Chaos

Histogram at t=1000

probability

0.0 0.2 0.4 0.6 0.8 1.0

Distribution converges rapidly to an invariant distribution
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Properties of Chaos

To see that let’s try a different initial distribution, say a Gaussian
with mean 0.25, s.d. 0.01, cutting out those outside [0, 1].

> x2 = rnorm(le4,0.25,0.01)
> X2 = x2[x2 >= 0]

> X2 = x2[x2 <= 1]

> length (x2)

[1] 10000

> hist (x2, freg=FALSE, xlab="x",ylab="probability",
main="Histogram at t=1",n=41,xlim=c(0,1))

> hist (logistic.map.evolution(4,1,x2), freg=FALSE, xlab="x",
ylab="probability",main="Histogram at t=5",n=41,
x1lim=c(0,1))
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Properties of Chaos

Histogram at t=1
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probability

0.5 1.0 15 2.0 25

0.0

Properties of Chaos

Histogram at t=5
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Properties of Chaos

by t =~ 10 it looks like as though initial conditions were uniform

Histogram at t=10

probability

0.0 0.2 0.4 0.6 0.8 1.0

X
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Properties of Chaos

Even though individual trajectories fluctuate all over, the
distribution converges
The invariant distribution is in fact

1

p(x) = = x) m
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Properties of Chaos

Ergodicity
If we do look at an individual trajectory, it looks similar to the
whole ensemble of trajectories; here is x; = 0.9

> hist (logistic.map.ts(1e3,1,0.9), freg=FALSE, xlab="x",

ylab="probability",
main="Histogram from trajectory to t=1000")
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Properties of Chaos

Histogram from trajectory to t=100
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Properties of Chaos

Histogram from trajectory to t=1000
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Properties of Chaos

Histogram from trajectory to t=1e4
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Properties of Chaos

Histogram from trajectory to t=1e6
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Properties of Chaos

looks pretty much like what you see from any one other
trajectory (here is y; = 0.91 in red)

> hist (logistic.map.ts(le6,1,0.9), freg=FALSE,xlab="x",
ylab="probability",
main="Histogram from trajectory to t=leb6",
n=1001)

> hist (logistic.map.ts(le6,1,0.91), fregq=FALSE, xlab="x",
ylab="probability",
main="Histogram from trajectory to t=leo6",
add=TRUE, border="red",n=1001)
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Properties of Chaos

Histogram from trajectory to t=1e4
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Properties of Chaos

Histogram from trajectory to t=1e6
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Properties of Chaos

In every case they are converging on the exact invariant
distribution

> hist (logistic.map.ts(le6,1,0.9), freg=FALSE,xlab="x",
ylab="probability",
main="Histogram from trajectory to t=le6\nvs.
invariant distribution",
n=1001, border="grey")
> curve (1/ (pi*sqrt (x* (1-x))),col="blue", add=TRUE,n=1001)
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Properties of Chaos

Histogram from trajectory to t=1e6
vs. invariant distribution
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Properties of Chaos

Ergodicity means that almost any long trajectory looks like a
representative sample from the invariant distribution

We will define this more precisely later, and explore why it is so
important for stochastic modeling
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Properties of Chaos

Short-Term Nonlinear Predictability

x.ts <- logistic.map.ts(le6,1,0.9)

Xt+1 0N X;

plot(x.ts[l:1led],x.ts[2:(led+1l)],xlab="x(t)",ylab="x(t+1)",
type:up")

only 10* points so it plots in a reasonable amount of time
y p

36-462 Lecture 1



Properties of Chaos
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Properties of Chaos

Linear regression is not your friend:

> Iml <- Im(x.ts[2:1e6] ~ x.ts[l:(le6-1)1)
> summary (1ml)

Call:
Im(formula = x.ts[2:1e+06] ~ x.ts[l:(le+06 - 1)1)

Residuals:
Min 10 Median 30 Max
-0.5005069 -0.3535795 0.0005158 0.3531829 0.4999921

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.4995090 0.0006124 815.687 <2e-16 ***
x.ts[l: (le+t06 - 1)] 0.0009979 0.0010000 0.998 0.318

Signif. codes: 0 "#%x%x’ 0.001 "%’ 0.01 "%’ 0.05 .7 0.1 " " 1
Residual standard error: 0.3536 on 999997 degrees of freedom

Multiple R-Squared: 9.958e-07, Adjusted R-squared: -4.188e-09
F-statistic: 0.9958 on 1 and 999997 DF, p-value: 0.3183
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Properties of Chaos

Xt+10 ON X;
The joint distribution here is very close to being independent
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Properties of Chaos

Xt+100 ON X;
Even closer to independence
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Properties of Chaos

... except that x;, « is a determistic function of x;, no matter
what k is, so how can they be independent?
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