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Stability of fixed points and cycles

Stability of fixed points
A fixed point or equilibrium x* is a solution to
x = f(x)

If x; = x*, then x; = x* forever

What if x4 is not a fixed point? What if someone knocks the
trajectory off the fixed point ever so slightly?

Taylor expansion around x*

X1 = f(x*)+ (Xt — x*)f'(x*) + remainder
X1 = X'+ (Xt — x*)F(x*) + remainder
X1 — X = (Xt — x*)f(x*) + remainder

back to exponential growth or decay, supposing that the
remainder term is in fact small
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Stability of fixed points and cycles

|f'(x*)| fate of small perturbations label
=0  super-exponential decay super-stable
<1 exponential decay stable
= set by remainder in Taylor expansion neutral
> 1 exponential growth unstable

For a cycle x1, x2, ... Xp, evaluate
p
17
i=1

— similar but more tedious calculus
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Stability of fixed points and cycles

All initial conditions sufficiently close to a stable fixed point
approach that fixed point

All initial conditions sufficiently close to an unstable fixed point
move away from it

Ditto for limit cycles
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Bifurcation

Bifurcation

What happens to the stability of a fixed point as the control
parameters change?

Example: stability of x = 0 in the logistic map

f'(0) = 4r

Stable if r < 0.25, unstable if r > 0.25, neutral if r = 0.25
Suppose r =025+ h, h>0

Solve:

x = (1+4h)x(1 —x)

X = Xx+4hx—x?—4hx?
4h
1+ 4h

When h~ 0, x* ~ 4h — 16h°



Bifurcation

Destabilization of 0
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Bifurcation

This is a simple example of a bifurcation, a point in parameter
space (not state space) where the stability of solutions changes
qualitatively

Bifurcation diagram = plot of stable solutions vs. control
parameters

Easiest way to make one: fix r, take a random x;, calculate xr
for T large, then plot x7.1, X742, ... X714+ (“throw away
transients”); repeat for another value of r
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Bifurcation

plot.logistic.map.bifurcations <- function (from=0,to=1,n=201,
plotted.points=1000
transients=10000) {
r.values = seqg(from=from,to=to,length.out=n)
total.time = transients+plotted.points
plot (NULL, NULL, xlab="r",ylab="x", xlim=c (from, to),ylim=c (0, 1)
main="Bifurcation Diagram for Logistic Map")
for (r in r.values) {
x = logistic.map.ts(total.time, r)
X = X[ (transients+1) :total.time]
points (rep(r,times=plotted.points), x,cex=0.01)

> plot.logistic.map.bifurcations (from=0.6,to=0.8,n=501)
> curve (4% (x-0.25)/ (1+4% (x-0.25)), from=0.75, to=0.8, add=TRUE, co
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Bifurcation

Bifurcation Diagram for Logistic Map
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Bifurcation

What happens at r = 0.75?
Period 2 means points xa, X» which solve

x = f(f(x)) (1)
and where

Xa = f(xp) 2)

Xo = f(Xa)

If x* = f(x) then f(f(x*)) = f(x*) = x* so if there are fixed points then there
are solutions to (1)

But maybe there are none which also solve (2)

At r = 0.75, x = f(f(x)) goes from having only 2 distinct solutions to have 4
and (2) gets solutions

and both solutions of x = f(x) become unstable

and the periodic solution is stable

You can check this using polyroot and the stability rules
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Bifurcation

Next bifurcation: 2-cycle destabilizes, stable 4-cycle appears

Bifurcation Diagram for Logistic Map
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Bifurcation

Overall picture

Bifurcation Diagram for Logistic Map
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Bifurcation

Each branch keeps splitting in 2

Bifurcation Diagram for Logistic Map
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Bifurcation

Each split looks like the first, scaled down

Bifurcation Diagram for Logistic Map
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Bifurcation

This keeps on happening, so more and more bifurcations pile up

In the limit distance between successive bifurcations shrinking by factor of
4.69...

Infinitely many bifurcations between r = 0.25 and r ~ 0.89248 — the
period-doubling accumulation point

What happens when there are infinitely many periodic orbits, with infinite
periods, but they are all unstable?
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Chaos

A more formal definition of chaos (due to Devaney):

@ There are periodic orbits arbitrarily close to any given point.
which means there are infinitely many periodic points
which means there are infinitely many periodic cycles

@ The map is transitive, i.e. there is some orbit connecting any two
regions
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Devaney’s definition implies

sensitive dependence on initial conditions There is a sensitivity scale 6 > 0
such that any two orbits will eventually be at least § apart, no
matter how close they started.

Sketch: periodic points stay on their cycle; but arbitrarily close to any periodic
point is a wandering point which eventually gets arbitrarily close to a different

cycle.
Take-home: chaos always has an infinity of periodic structures embedded in
it, but they’re all unstable
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Mechanically, chaos requires “stretching and folding”

Stretch: locally, separate near-by points in the state space

Fold: then stuff everything back into the state space

At r = 1, each half of the state space is mapped on to the whole
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Fun with stretching and folding: Arnold Cat Map

Our first two-dimensional map!

(Xt41, Yer1) = (Xt + Y1, Xt + 2yr) mod 1

Xt+1 - 1 1 Xt
=18 2 e

This is ergodic and even mixing, but also exactly reversible
And: embedded periodic points (rational numbers)
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Image from Leon Poon http://www-chaos.umd.edu/images/catmap.gif
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http://www-chaos.umd.edu/images/catmap.gif

from Wikipedia, s.v. “Arnold’s cat map”
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Periodic windows

break up the chaotic region; each has its own period-doubling cascade

Bifurcation Diagram for Logistic Map
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The Story So Far

Stable periodic orbit (incl. fixed points) trajectories go towards the stable
structure; switch from one periodic structure to another at
bifurcations

Ordinary chaos infinity of periodic orbits, all of them unstable (trajectories
which come near one move away exponentially fast)

Periodic windows infinity of unstable periodic orbits, and one stable one

But what if we have an infinity of unstable periodic orbits, and one neutrally
stable periodic orbit?

36-462 Lecture 2



Intermittency

Take r = 0.9571
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Just a stable 3-cycle? Try some more initial conditions
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take a longer view
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Trajectories switch between staying at a 3-cycle and looking properly chaotic
This is intermittency or intermittent chaos
Look at plot of f(f(f(x))) = f®(x) to understand
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Now add in what happens with r at bit bigger (red) and a bit smaller (blue)

X(t+3)

x(t)

36-462 Lecture 2



r a bit smaller: two unstable solutions (at 0 and around 3/4)

0.8 1.0
|

x(t)
0.6

0.4
|

0.2

T T T T T T
0 2000 4000 6000 8000 10000

36-462 Lecture 2



r a bit larger: eight solutions (zero, unstable fixed point, stable 6-cycle)
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Derivative = 1 at every periodic point

because the & curve is tangent to the diagonal

so periodic points are neutrally stable

When the orbit comes close to one of the periodic points, it stays there for a
long time, the orbit is almost stable
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Distribution: spikes around the points that want to be a 3-cycle

Histogram from intermittent point
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Distribution just below intermittent point

Histogram below intermittent point
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Note: change in vertical scale
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Generically, the invariant distributions of chaos are very irregular and spiky
We will come back to this next lecture
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Practically: chaos means determinism, sensitivity, and ergodicity
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Ergodicity

Ergodicity

More precise definition than last time: for almost any initial condition x; and
any reasonable function h

:,;j; h(x) — /h(X)p(X)dX

where p(x) is the invariant density
Left-hand side is a time average

Right-hand side is an expectation or (state) space average
Ergodicity means “time averages converge on expectations”
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Ergodicity

More on the evolution of ensembles

Remember the transformation formula for densities: if X has density p, then
Y = f(X) has density g with

—1

of

aW) =p(f ()| 5,

taking the derivative at f~'(y) as well

meaning: density at new point y is density at the point going to y, times the
size of the region which goes there

still works for maps but now for ~'(x;1) can have multiple values; add up
terms like this for each one
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Ergodicity

for logistic map with r = 1

_ p(0.5-0.5v1 —x) " p:(0.5+ 0.5v1 — x)
41 — x 41 — x
Perron or Frobenius or Frobenius-Perron or Perron-Frobenius operator
Can be used to evolve densities exactly, rather than by simulation
Note: the evolution of the ensemble is linear!
EXERCISE: Show that this really does leave the invariant distribution alone
See Lasota and Mackey (1994); Mackey (1992) for much more

Prs1(X)
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Ergodicity

Very simple ergodic systems:
@ Fixed points (invariant distribution puts all probability on fixed point)

@ Periodic cycles (invariant distribution puts equal probability on each
point)

At the other end: if xq, Xz, . . . are successive |ID random samples, then law of
large numbers = ergodic property
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Ergodicity

Very Simple Ergodic Theorem
From Frisch (1995)

X; are random variables with constant mean and variance,
cov[Xs, Xerr] = T(7)

- 24 IM()
7=0 T —
F(O) = Teorr < 00
THEN
1 T
var |:T Z X[ m 0
t=1

So with time averages converge stochastically on expectations
(< variance | 0 + Chebyshev’s inequality)
take E[X;] = 0 for simplicity
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Ergodicity

cov[ X, Xs]
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Ergodicity

Variance « 1/T, just like variance of a random sample « 1/N
but correction factor of r.orr = time needed for correlation to decay

Notice that this is sufficient, not necessary, for ergodic convergence, because
correlations do not decay for periodic cycles
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Ergodicity

plot.logistic.map.timeaverages <- function (timelength,num.traj
r, 1ined=TRUE, cex=1)
plot (NULL,NULL, x1lim=c (0, timelength),ylim=c(0,1),xlab="t",
ylab="Time average of x(t)")

i=20

while (i < num.traj) {
i <= i+l
x <- logistic.map.ts(timelength, r)
x.avg = cumsum(x)/ (l:timelength)

if (lined==TRUE) {
lines(l:timelength,x.avg, lty=2)
}

points(l:timelength, x.avg, cex=cex)

36-462 Lecture 2



Ergodicity

Time-averages of logistic map, r = 1, with 1/+/ lines
Recall cov[X;, Xi+1] = 0, similarly I'(7) = 0 always
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Ergodicity

Time average of cos 2w x;, because we can (r = 1)
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Ergodicity

r = 0.9521 (below intermittency)
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Ergodicity

r = 0.9621 (above intermittency)
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Ergodicity

r = 0.9571 (intermittency)
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note slower convergence
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Ergodicity

Intermittency means correlations, but they do decay

Autocorrelation of intermittent series
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Ergodicity

Chaos as a source of randomness

Black means x < 0.5, red means x > 0.5; hereisr =1
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Ergodicity

plot.little.line = function(center,width,height,...) {
lines (c(center-width, center+width),c (height, height),...)

logistic.map.fates = function(iterations,n=1000, from=0,to=1,r=1,...) {
x = seq(from=from, to=to, length.out=n)
x.ic = x
plot (NULL,NULL, xlim=c (from,to),ylim=c (0, iterations), xlab="x"
ylab="t")
for (1 in 1l:iterations) {
blacks = x.ic[x <= 0.5]
reds = x.ic[x > 0.5]
num.blacks = length (blacks)
num.reds = length (reds)
sapply (blacks, plot.little.line, width=1/(2xn),height=i-1,
col="black",...)
sapply (reds, plot.little.line, width=1/(2%n),height=1i-1,
col="red",...)
x = logistic.map (x,r)
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Ergodicity

zoom in on the left half

by t = 10 looks pretty much like whole thing
knowing initial condition helps you less and less as time goes on
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Ergodicity

and here is r = 0.9571 (to check this isn'tjust r = 1)
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re to Keller’s picture of coin tossing (via Guttor




Ergodicity

Coin-tossing very fine control of initial conditions needed to control
outcome at reasonable speeds
re-setting between tosses

Logistic map only crude control of initial conditions needed at first
no degree of control keeps working

One way to get eventual independence is to work at this coarse-grained level
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