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Abstract

This document elaborates a bit on the idea of Lyapunov exponents. The
first part makes a couple of “it can be shown that claims”. These are fleshed
out in the second part, which uses linear algebra (eigenvalues and eigen-
vectors). For simplicity, everything is done in discrete time, for maps; con-
tinuous time, with flows, is basically similar but needs more notation.

1 The Basic Idea

Pick your favorite state x and update rule Φ. In general x is a vector in some
d-dimensional space;the components are x1, x2, . . . xd. Imagine a small pertur-
bation to this state, δ — again another vector. What happens to the perturbed
initial condition under the update rule? Use Taylor expansion:

Φ(x + δ) = Φ(x) + δΦ′(x) + small

Here Φ′ is the matrix of derivatives of Φ:

Φ′
ij =

∂Φi

∂xj

So
Φ(x + δ)− Φ(x) ≈ δΦ′(x)

So the distance between the iterates of x and x + δ is proportional to the size
of the perturbation, ‖δ‖ (at least if ‖δ‖ is small enough for Taylor expansion
to work), but the constant of proportionality depends on the direction of the
perturbation. That is,

‖Φ(x + δ)− Φ(x)‖
‖δ‖

=
∥∥∥∥ δ

‖δ‖
Φ′(x)

∥∥∥∥ (1)

where we can see that the right-hand side depends only on the normalized
perturbation vector, i.e., the direction of δ.

It can be shown that there is some direction, call it e1(x), which maximizes
(1). Call this maximum value A1(x). There is a d−1 dimensional space of direc-
tions which are all perpendicular to e1. Among these, one of them maximizes

1



(1). Call this direction e2, and its value A2(x). Proceeding in this way, one gets
a sequence of d different vectors, all perpendicular to each other, ei ⊥ ej , with
a corresponding sequence of magnification values, Ai. It can be shown that
ed(x) is the direction in which (1) is smallest.

It can further be shown that if δ lies along the direction ei, then Φ(x + δ) −
Φ(x) also lies along that direction. So under repeated applications of the map,
we would see

‖Φn(x + δ)− Φn(x)‖
‖δ‖

= (Ai(x))n = en log Ai(x)

Let’s abbreviate log Ai by Λi. The set of d numbers Λ1(x),Λ2(x), . . . Λd(x) are
the local Lyapunov exponents at x. The directions ei for which Λi > 0 are
locally unstable directions, the directions for which Λi < 0 are locally stable,
and the ones for which Λi = 0 are neutral.

Now Λi(x) is a function of the location in the state space. One can calculate
a time-average along a trajectory:

1
T

T∑
n=1

Λi(xn)

If the dynamics are ergodic, this will converge to an invariant value, which is

λi ≡
∫

Λi(x)ρ(x)dx

ρ(x) being the invariant distribution. The expectation values λi are the global
Lyapunov exponents; without any modifier, by default “Lyapunov exponent”
refers to these global values.

2 The Bits with Linear Algebra

Φ takes a d-dimensional vector as input and gives a d-dimensional vector as
output, so Φ′ is a square matrix of derivatives. This means it has d eigenvectors
and eigenvalues, which are orthogonal. That is, there are d vectors ei, with
‖ei‖ = 1 and ei ⊥ ej , such that

eiΦ′ = Aiei

the scalar numbers Ai being the eigenvalues.
Let’s try to find the direction that maximizes ‖δΦ′‖. This means fixing ‖δ‖ =

1 and trying different directions. In other words, we are trying to maximize

(δΦ′) · (δΦ′)

subject to the constraint
δ · δ = 1

2



Introduce a Lagrange multiplier1 µ to enforce the constraint:

L = (δΦ′) · (δΦ′)− µ(δ · δ − 1)

and maximize L with respect to both the δ and µ:

∂L
∂δ

= 2δΦ′ − 2µδ = 0

∂L
∂µ

= δ · δ − 1 = 0

The first of these equations tells us that δ must be one of the eigenvectors of Φ′,
and that the Lagrange multiplier µ must be one of the eigenvalues. (The second
equation just reminds us that δ must be normalized.) So the direction in which
perturbations are most amplified is the eigenvalue with the largest eigenvector,
and so on down the line to the eigenvector with the smallest eigenvalue.2

The eigenvectors form a basis for the space, so any vector can be written in
terms of the eigenvectors:

δ =
d∑

i=1

(δ · ei)ei

This means that

δΦ′ =
d∑

i=1

(δ · ei)Aiei

so if we want to know what happens to an arbitrary perturbation δ, we just
have to decompose it into the eigenvectors.
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1If you do not know what Lagrange multipliers are, read [1].
2Those of you who took 36-350 last semester should going “Stop, I’ve heard this one before” by

now.
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